首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effects of the southern oscillation on the probability for climatic categories of monthly rainfall, in a semi-arid region in the southern mid-latitudes
Authors:Omar Abel Lucero
Institution:Centro de la Región Semiárida (INA) and Universidad Nacional de Córdoba, Córdoba, Argentina
Abstract:In many regions of the world, planning agricultural and water management activities is usually done based on probabilities for monthly rainfall, taking on values on specified intervals of values. These intervals of monthly rainfall amounts are commonly grouped into three categories: drought, normal rainfall, and abundant rainfall. Changes in the probabilities for occurrence of monthly rainfall amounts within these climatic rainfall categories will influence the decisions farmers and water managers will take (for example, crops to cultivate, flood preparedness, and operations of water reservoirs). This research explores the changes produced by the SO (Southern Oscillation) on the probability that the areal average of monthly rainfall (AAvMR) takes on values belonging to specified climatic rainfall categories. The semi-arid region under study is a major agricultural region in central Argentina; weather effects on agriculture in this region influence the world market of several crops. The evolution of the Southern Oscillation was divided into three phases: LSOI (low Southern Oscillation index phase, that includes ENSO events), NSOI (neutral SOI phase), and HSOI (high SOI phase that includes La Niña–SO events). The following are the criteria defining the three phases of the SO: (1) low SOI (ENSO), where the five-month moving average of the SO index, SOI, is less than −0.5 standard deviation during at least five consecutive months, and is equal to or less than −1 standard deviation during at least one month; (2) high SOI (La Niña–SO), where the SOI is greater than 0.5 standard deviation during at least five consecutive months, and is equal to or greater than 1 standard deviation during at least one month; and (3) neutral SOI (transition between extremes), where the SOI does not correspond to low SOI nor to high SOI. It was found that the Southern Oscillation influences the probability distribution of monthly rainfall only in four months of the year. Findings show that monthly rainfall has a complex response to the evolution of the SO. The response is not restricted to higher probability for occurrence of abundant rainfall or drought categories during low SOI (ENSO) or high SOI (La Niña–SO) episodes, respectively. The LSOI (ENSO) phase influences the AAvMR in several ways: depending on the month, it increases or decreases the probability of the abundant rainfall category. LSOI (ENSO) also increases or decreases, depending on the month, the probability of the normal rainfall category. It also decreases the probability that AAvMR takes on values in the drought category. A similar kind of complex response of monthly rainfall amounts occurs when the active phase is the HSOI (La Niña–SO). The responses are: (1) the probability of the category `drought' increases only in three months of the year, (2) increase or decrease of the probability of the normal rainfall category, depending on the month, and (3) decrease of the probability of the abundant rainfall category. Finally, the effects of NSOI (neutral phase of the SO) are not negligible. Depending on the month, NSOI episodes increase or decrease the probability of drought, or abundant rainfall, or normal rainfall categories.
Keywords:Rainfall  Semi-arid  Southern oscillation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号