首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Lightning evolution related to radar-derived microphysics in the 21 July 1998 EULINOX supercell storm
Authors:Nikolai Dotzek  Hartmut Hller  Claire Thry  Thorsten Fehr
Institution:Nikolai Dotzek, Hartmut Höller, Claire Théry,Thorsten Fehr
Abstract:Results of a combined analysis of data from a C-band polarimetric Doppler radar and a 3D VHF interferometric lightning mapping system, as obtained during the European Lightning Nitrogen Oxides project (EULINOX) field campaign, are presented. For 21 July 1998, the lightning data from a supercell thunderstorm weakly indicate a tendency for a bi-level vertical distribution of lightning VHF emissions around the −15°C and −30°C temperature levels. Also, in some parts of the clouds, evidence is found for the presence of a lower positive charge center near the freezing level. However, where strong vertical motions prevail, VHF emissions are not organized in horizontal layers but in oblique or vertical regions. Correlation of VHF signals with radar quantities shows that in the growing storm, peak VHF activity is low and related to reflectivity factors around 30 dBZ, while after the mature stage, the peak VHF activity is about three times larger. The highest density of VHF signals is now found near reflectivity factors of 45 dBZ. A polarimetric hydrometeor classification indicates that during storm development, most lightning activity occurs where graupel and, secondarily, snow and small dry hail are present. In the decaying phase of the supercell hailstorm, however, most lightning VHF emissions stem from the region with hail and heavy rain. Furthermore, while the VHF signal frequency per cubic kilometer in the graupel and rain regions remains nearly constant throughout the supercell life cycle, the signal frequency in the hail region rises during storm decay.
Keywords:Lightning  EULINOX  Supercell storm
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号