首页 | 本学科首页   官方微博 | 高级检索  
     检索      

基础隔震结构健康监测系统的设计与实现(Ⅰ):系统设计
引用本文:李万润,郑文智,杜永峰,李慧.基础隔震结构健康监测系统的设计与实现(Ⅰ):系统设计[J].西北地震学报,2016,38(1):94-102.
作者姓名:李万润  郑文智  杜永峰  李慧
作者单位:兰州理工大学 甘肃省土木工程防灾减灾重点实验室, 甘肃 兰州 730050;兰州理工大学 防震减灾研究所, 甘肃 兰州 730050;兰州理工大学 西部土木工程防灾减灾教育部工程研究中心, 甘肃 兰州 730050;兰州理工大学 防震减灾研究所, 甘肃 兰州 730050;兰州理工大学 甘肃省土木工程防灾减灾重点实验室, 甘肃 兰州 730050;兰州理工大学 防震减灾研究所, 甘肃 兰州 730050;兰州理工大学 西部土木工程防灾减灾教育部工程研究中心, 甘肃 兰州 730050;兰州理工大学 甘肃省土木工程防灾减灾重点实验室, 甘肃 兰州 730050;兰州理工大学 防震减灾研究所, 甘肃 兰州 730050;兰州理工大学 西部土木工程防灾减灾教育部工程研究中心, 甘肃 兰州 730050
基金项目:国家自然科学基金(51578247,51178211,51568041);甘肃省青年科技基金计划(148RJYA004);兰州理工大学建筑工程系七七级校友奖励基金(TM-QK-1307)
摘    要:在医院、教学楼等建筑中广泛采用隔震技术,能降低地震对上部结构的破坏作用。虽然隔震技术经过几十年的发展已趋于成熟,但环境及其他荷载对隔震结构性能的影响规律、结构设计的合理性以及震后结构状态评估等问题,仍需建立隔震结构健康监测系统对施工、运营期的结构响应进行监测,并对其进行评估与验证。首先,针对基础隔震结构的特点,研究了基础隔震结构的主要监测内容;在此基础上提出基础隔震结构健康监测系统的总体设计要求及原则,根据不同监测对象(整体与局部监测量)给出基础隔震结构传感器布置原则和数据采集系统软硬件设计原则,提出基础隔震结构设计验证与安全评定方法;最后给出基础隔震结构健康监测值得进一步研究的问题。

关 键 词:基础隔震结构  结构健康监测  系统设计  性能评估
收稿时间:2015/5/4 0:00:00

Design and Implementation of Structural Health Monitoring System for Base-isolated Structure (I): System Design
LI Wan-run,ZHENG Wen-zhi,DU Yong-feng and LI Hui.Design and Implementation of Structural Health Monitoring System for Base-isolated Structure (I): System Design[J].Northwestern Seismological Journal,2016,38(1):94-102.
Authors:LI Wan-run  ZHENG Wen-zhi  DU Yong-feng and LI Hui
Institution:Key Laboratory of Disaster Prevention and Mitigation in Civil Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, Gansu, China;Institute of Earthquake Protection and Disaster Mitigation, Lanzhou University of Technology, Lanzhou 730050, Gansu, China;Western Center of Disaster Mitigation in Civil Engineering of Ministry of Education, Lanzhou University of Technology, Lanzhou 730050, Gansu, China;Institute of Earthquake Protection and Disaster Mitigation, Lanzhou University of Technology, Lanzhou 730050, Gansu, China;Key Laboratory of Disaster Prevention and Mitigation in Civil Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, Gansu, China;Institute of Earthquake Protection and Disaster Mitigation, Lanzhou University of Technology, Lanzhou 730050, Gansu, China;Western Center of Disaster Mitigation in Civil Engineering of Ministry of Education, Lanzhou University of Technology, Lanzhou 730050, Gansu, China;Key Laboratory of Disaster Prevention and Mitigation in Civil Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, Gansu, China;Institute of Earthquake Protection and Disaster Mitigation, Lanzhou University of Technology, Lanzhou 730050, Gansu, China;Western Center of Disaster Mitigation in Civil Engineering of Ministry of Education, Lanzhou University of Technology, Lanzhou 730050, Gansu, China
Abstract:Due to reduce the damaging effect of superstructures subjected to strong earthquakes, isolation technology is widely used in infrastructure construction, such as in hospitals, teaching buildings, and so on. Many significant research achievements have been achieved with respect to base-isolated structures (BISs). Although isolation technology has been maturing over several decades of development, a number of questions remain. The influence on BISs subjected to strong ground motion, and environmental and other loads, the rationality of structure design, and the performance of BISs buildings that have experienced earthquakes must still be verified by structural health monitoring operation. A BIS structural health monitoring system consists of sensory system, data acquisition and transmission system, data processing and control system, structural health data management system, structural health evaluation system, and inspection and maintenance system. Based on site inspections, prior monitoring of dynamic parameters based on BIS characteristics has been proposed. The monitored data should include seismic ground motion, temperature and humidity of the isolation layer, the foundation settlement and wind load (high-rise BISs), horizontal and vertical static displacement of the isolation bearings, vertical strain on the isolation bearings and strain of the isolation layer girder, and horizontal and vertical dynamic displacement of the isolation bearings and acceleration response of the superstructure. Considering the BIS characteristics, in this paper, we propose the primary subjects to be monitored, and consider the general overall design requirements of a BIS health monitoring system. According to different monitoring variables (global and local), we propose basic principles for the sensors selection and layout, and the hardware and software designs of the data acquisition and transmission system. We also present approaches to the design verification and safety performance evaluation. Finally, we address the problems which need to be further studied with respect further study with respect to the influence rule for isolation bearing in the construction process, concrete shrinkage of the superstructure, and setting the site of the post-poured strip; temperature load spectrum and a correlation model of BISs with temperature; how to assess the performance of a BIS while isolation bearing in parallel caused an initial displacement; questions about the fatigue of BISs subjected to earthquakes and wind load; and questions about the rule of progressive and anti-progressive collapses of BISs.
Keywords:base-isolated structure  structural health monitoring  system design  performance evaluation
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《西北地震学报》浏览原始摘要信息
点击此处可从《西北地震学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号