首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Massive sulfides in a sedimented rift valley, northern Juan de Fuca Ridge
Authors:Earl E Davis  Wayne D Goodfellow  Brian D Bornhold  John Adshead  Bertrand Blaise  Heiner Villinger  Gina M Le Cheminant
Abstract:A number of mounds each several hundred meters across and up to sixty meters high have been observed with SeaMARC II acoustic imagery and Seabeam bathymetry in the sediment-filled axial valley at the northern end of the Juan de Fuca Ridge. The mounds are located a few kilometers west of the eastern valley-bounding normal fault scarp where the local sediment fill is approximately 300 m thick. All of the mounds are believed to be of hydrothermal origin, and one is associated with anomalously high heat flow in excess of 1 W m−2. A piston core collected from that mound comprises coarse clastic sulfide units interbedded with sulfidic muds. Hydrothermal minerals present in the 2.3 m section include pyrrhotite, pyrite, marcasite, sphalerite, chalcopyrite, iss (intermediate solid solution in the CuFeZnS system), chalcopyrrhotite, galena, talc, barite, and amorphous silica. Mineral fabrics of the clasts indicate that the material was precipitated at or near the sea floor by mixing of hot hydrothermal fluids with cold seawater. Low concentrations of Zn, Cu, Cd, and Ag relative to those found in unsedimented ridge hydrothermal deposits, and the presence of pyrrhotite as an early phase mineral indicates that the vent fluids have been modified by reaction with sediments beneath the mound. Rapid sedimentation in a rift valley is clearly conducive to the formation of large hydrothermal mineral deposits like those believed to be present within and beneath these mounds. The relatively impermeable sediment cover insulates the crust, inhibits groundwater recharge, promotes long-lived discharge at a restricted number of sites, provides a substrate for the efficient subsurface precipitation of minerals, and through continued sedimentation, protects surficial deposits from the corrosive effects of seawater. No reliable estimate of the bulk composition of the mounds can be made with existing data, but their size is comparable to major hydrothermal mineral deposits found on land; ancient settings in which many land deposits formed are in many ways similar to the one in which the features described here are currently forming.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号