首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Incremental distributed modelling investigation in a small agricultural catchment: 2. Erosion and phosphorus transport
Authors:Antti Taskinen  Michael Bruen
Institution:1. Finnish Environment Institute, Department for Expert Services, Hydrological Services Division, Mechelininkatu 34 a, PO Box 140, FIN‐00251 Helsinki, Finland;2. Centre for Water Resources Research, School of Architecture, Landscape and Civil Engineering, UCD Dublin, Earlsfort Terrace, Dublin 2, Ireland
Abstract:Distributed physically based erosion and phosphorus (P) transport models, run by the overland flow model described in Taskinen and Bruen (2006. Hydrological Processes 20 : this issue), are described. In the erosion model, the additional components to the basic model were the outflow of the particles by infiltration and a new model component, i.e. deposition when rainfall stops. Two ways of calculating the shielding factor due to the flow depth were compared. The P transport model had both dissolved P (DP) and particulate P (PP) components. The processes included in the DP model were desorption from the soil surface, advection, storage in the overland flow and infiltration. The PP model accounted for advection, storage in the flow, infiltration, detachment from the soil surface by flow and rainfall and deposition both when transport capacity of suspended solids (SS) is exceeded and when rainfall ceases. When the models were developed and validated in small agricultural fields of cohesive soil types in southern Finland, comparisons were made between corresponding processes and the significance of added components were estimated in order to find out whether increased model complexity improves the model performance. The sedigraphs were found to follow the dynamics of rainfall, emphasizing the importance of the rainfall splash component. The basic model was too slow to react to changes in rainfall and flow rates, but infiltration and deposition that acts during the cessation in rainfall improved the model significantly by enabling the modelled SS to fall sharply enough. The shielding effect of flow depth from the splash detachment was found to play a significant role. Transport capacity should also be included in erosion models when they are applied to cohesive soils. In this study, the Yalin method worked well. A strong correlation was obvious between the measured SS and total P concentrations, indicating that the main form of P in runoff is PP. This emphasizes the importance of a good sediment transport model in P transport modelling. The submodel used for DP desorption from the soil surface produced plausible results without any calibration. Copyright © 2006 John Wiley & Sons, Ltd.
Keywords:erosion  transport capacity  rainfall splash  phosphorus transport  particulate phosphorus  dissolved phosphorus  verification  distributed model
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号