首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Experiment and analysis of a leverage‐type stiffness‐controllable isolation system for seismic engineering
Authors:Lyan‐Ywan Lu  Shih‐Wei Yeh
Institution:1. Department of Construction Engineering, National Kaohsiung First University of Science and Technology, 1 University Road, Yenchao, Kaohsiung 824, TaiwanProfessor.;2. Department of Construction Engineering, National Kaohsiung First University of Science and Technology, 1 University Road, Yenchao, Kaohsiung 824, Taiwan
Abstract:Owing to the fixed design parameters in traditional isolation systems, the optimal isolation performance may not always be achieved when a structure is subjected to a nondesign earthquake. At the same time, even though an active isolation system (AIS) can offer a better reduction for different seismic waves, in practice the control energy required still constrains its application. To solve this problem, a novel semi‐active isolation system called the Leverage‐type Stiffness Controllable Isolation System (LSCIS) is proposed in this paper. By utilizing a simple leverage mechanism, the isolation stiffness and the isolation period of the LSCIS can be easily controlled by adjusting the position of the pivot point of the leverage arm. The theoretical basis and the control law for the proposed system were first explained in this work, and then a shaking table test was conducted to verify the theory and the feasibility of the LSCIS. As shown in the experiment, the seismic behavior of the LSCIS can be successfully simulated by the theoretical model, and the isolation stiffness can be properly adjusted to reduce the seismic energy input in the LSCIS system. A comparison of the LSCIS with the other systems including passive isolation and AISs has demonstrated that based on the same limitation of base displacement, better acceleration reduction can be achieved by the LSCIS than by any of the other isolation systems. In addition, the control energy required by the LSCIS is lower than that for an AIS using the traditional LQR control algorithm. Copyright © 2010 John Wiley & Sons, Ltd.
Keywords:seismic isolation  semi‐active control  variable stiffness  minimum input energy  leverage theorem  position control  servo motor
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号