首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Fractionation of rare-earth elements in plants during experimental growth in varied clay substrates
Authors:Khadija Semhi  Sam Chaudhuri  Norbert Clauer
Institution:1. Centre de Géochimie de la Surface (CNRS/ULP), Université Louis Pasteur, 1 rue Blessig, 67084 Strasbourg, France;2. Department of Geology, Kansas State University, Manhattan, Kansas 66506, USA
Abstract:The distribution and content of rare-earth elements (REEs) were determined in two radish species, the cultivated Raphanus sativus and the wild Raphanus raphanistrum, that were grown under laboratory-controlled conditions, in three substrates consisting of illite for one and two smectite substrates for the others, with the two smectite substrates being characterised by different porosities. The plants were split into leaves and stems + roots for analysis. The results indicate that both species take up systematically higher amounts of REEs when grown in the illite substrate, even considering that the smectite equivalent contains about three times more REEs. The REE uptake is also more plant species than mineral composition dependent: R. raphanistrum takes up 3.5–6.7 times more REEs than R. sativus, depending on the substrate, its porosity and the considered plant segments. Increased substrate porosity favours the take up of the REEs, but no specific uptake is observed in leaves relative to that in the combined stems and roots. The transfer of the REEs from minerals to plant organs does not appear to induce systematically identical patterns: (1) in the case of R. sativus, a positive Eu anomaly is visible in all patterns from both segment groups grown in both substrates. When grown in illite, the heavy REEs are also enriched in the stems and roots, which has not been observed in any other organ or in the other substrate and (2) in the case of R. raphanistrum, a very significant positive Gd anomaly, which is not expected to fractionate relative to the other REEs as do Ce and Eu, is observed in all segments of the plants grown in both substrates. A slight negative Ce anomaly is also visible in some of the REE patterns, suggesting some changes in the oxidation–reduction conditions in the substrates near the roots during plant growth. The comparison of the REE patterns from leaves relative to those of the roots + stems shows that those of R. raphanistrum grown in illite provide a spectrum that is very specific with significant deficits in La, Ce, Gd, Tm, Yb and Lu in the leaves. In the other cases, the patterns do not outline significant differences except for R. sativus grown in illite, in which the leaves are enriched in light and medium REEs from La to Gd relative to the stems + roots.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号