摘 要: | 为了提高大坝变形的预测精度,提出一种基于遗传算法的小波神经网络模型。首先通过对BP神经网络隐含层神经元的替换,弥补了网络易收敛于局部极小点的缺陷,增强了函数逼近能力,进而建立了小波神经网络大坝预测模型;再利用该模型对大坝变形训练集进行学习,并运用遗传算法选取全局最优参数。该方法充分利用了小波神经网络强大的非线性预测能力和遗传算法的全局优化搜索功能,弥补了BP神经网络存在的理论缺点。将其与小波神经网络、BP神经网络进行比较,实验结果表明该方法具有更优的局部预测值、更高的全局预测精度,适用于复杂的大坝变形预测。
|