首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度学习的太阳F_10.7辐射通量的短期预报研究
作者姓名:高扬  吕建永  王明  李婧媛  熊雅婷  彭光帅
作者单位:南京信息工程大学空间天气研究所
基金项目:国家自然科学基金项目(41974190、42030203)资助。
摘    要:F10.7太阳辐射通量作为输入参数被广泛运用于大气经验模型、电离层模型等空间环境模型,其预报精度直接影响航天器轨道预报精度.采用时间序列法统计了太阳辐射通量F10.7指数和太阳黑子数(SSN)的关系,给出了两者之间的线性关系,在此基础上提出了一种基于长短时记忆神经网络(Long and Short Term Memory,LSTM)的预报方法,方法结合了54 d太阳辐射通量指数和SSN历史数据来对F10.7进行未来7 d短期预报,并与其他预报方法的预报结果进行了比较,结果表明:(1)所建短期预报7 d方法模型的性能优于美国空间天气预报中心(Space Weather Prediction Center, SWPC)的方法,预测值和观测值的相关系数(CC)达到0.96,同时其均方根误差约为11.62个太阳辐射通量单位(sfu),预报结果的均方根误差(RMSE)低于SWPC,下降约11%;(2)对预测的23、24周太阳活动年结果统计表明,太阳活动高年的第7 d F10.7指数预报平均绝对百分比误差(MAPE)最优可达12.9%以内,低年最优可达2...

关 键 词:太阳:射电辐射  太阳:黑子  方法:数据分析
收稿时间:2021-04-12
本文献已被 维普 等数据库收录!
点击此处可从《天文学报》浏览原始摘要信息
点击此处可从《天文学报》下载免费的PDF全文
正在获取相似文献,请稍候...
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号