首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Uplift rate and landscape development in southwest Fiordland, New Zealand, determined using Be and Al exposure dating of marine terraces
Authors:KJ Kim  R Sutherland
Institution:1 Institute of Meteoritics, University of New Mexico, Albuquerque, NM 87131, USA
2 Institute of Geological and Nuclear Sciences Ltd., Lower Hutt, New Zealand
Abstract:We demonstrate that cosmogenic nuclide surface exposure dating can be used to provide the first well-constrained age for a Fiordland bedrock surface that was created by coastal erosion and has since been uplifted. Tight clustering of 10Be and 26Al apparent exposure ages between 102-119 kyr on a terrace with strandline at 65 ± 8 m gives a last interglacial age of terrace formation of 130-120 ka, and an uplift rate of 0.52 ± 0.08 mm/yr. Apparent exposure ages from a higher (92-130 m), more incised region of remnant coastal morphology fall in the range 53-111 kyr. The anomalously low ages and large variance demonstrate that weathering and fluvial or rockfall erosion rates are too extreme at the higher sites to determine an age of coastal erosion. Sea level samples have apparent exposure ages in the range 2-11 kyr, with an uncertainty of about 3 kyr. This is consistent with surface exposure during the present sea level high-stand, indicates minimal inheritance of ancient cosmogenic nuclides, and is in accord with geomorphic arguments. Mean 26Al/10Be ratios of 6.6 for each sample set is consistent with the actively exhuming late Quaternary tectonic setting. Large boulders and gently convex rocky outcrops formed during coastal erosion preserve surfaces that are least modified during later uplift, and are hence the best sites for determining the age of coastal erosion.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号