首页 | 本学科首页   官方微博 | 高级检索  
     


The use of oxygen isotope variation in shells of estuarine mollusks as a quantitative record of seasonal and annual Colorado river discharge
Authors:David L. Dettman,Karl W. Flessa,Bernd R. Schö  ne
Affiliation:1 Department of Geological Sciences, University of Arizona, Tucson, AZ 85721, USA
2 Department of Invertebrate Zoology and Geology, California Academy of Sciences, San Francisco, CA 94118, USA
3 Geologisch-Paläontologischen Institute, Johann Wolfgang Goethe Universität, D-60054 Frankfurt, Germany
Abstract:We describe a new method for the calculation of river flow that uses the oxygen isotope composition of bivalve mollusk shells that grew in the river-water/seawater mixing zone of the Colorado River estuary. Sclerochronological techniques are used to identify tidally-induced, fortnight-scale bundles of daily growth increments within shell cross-sections. These fortnightly markers are used to establish a chronology for samples taken for δ18O analysis. A composite seasonal δ18O profile derived from five shells that grew in the absence of river-water flow is used as a baseline against which profiles of river-influenced shells are compared. Because this comparison is between matched fortnights within a year, the temperature of shell growth is likely to be very similar. The difference in δ18O between the river-influenced shell and the “no-flow” composite shell therefore represents the change in the δ18O of the water due to the presence of river water in the mixing zone. The river water end-member is also determined within a fortnightly context so that the change in the δ18O of mixing-zone water can be used to calculate the relative proportions of seawater and fresh-water. The fresh-water end-member is calculated from the δ18O of bivalves alive prior to the emplacement of dams and water diversions on the Colorado River. The marine end-member is based on direct measurements of the δ18O of northern Gulf of California water during times of no Colorado River flow. The system has been calibrated to absolute flow amounts using recent releases of known volume and rate.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号