首页 | 本学科首页   官方微博 | 高级检索  
     

基于组合赋权的岩爆倾向性预测灰评估模型及应用
引用本文:裴启涛,李海波,刘亚群,张国凯. 基于组合赋权的岩爆倾向性预测灰评估模型及应用[J]. 岩土力学, 2014, 35(Z1): 49-56
作者姓名:裴启涛  李海波  刘亚群  张国凯
作者单位:1. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,武汉 430071; 2. 长江科学院 水利部岩土力学与工程重点实验室,武汉 430010
基金项目:国家973国家重点基础研究发展计划资助(No.2010CB732001);国家杰出青年基金资助(No.51025935);国家自然科学基金面上项目资助(No.51174190)。
摘    要:
提出一种用以确定岩爆灾害评价中各指标权重的组合赋权(GEM-GW)方法。该方法依据信息熵理论,对基本熵权法进行改进,理论上解决熵权法在某些情况下不适用的问题,并引入欧几里得距离函数,使得主、客观权重之间和偏好系数间的差异程度一致,从而获得理想的综合权重。在该基础上,根据岩爆的成因及特点,选取影响岩爆的主要评价指标,同时对灰色聚类法进行优化,建立基于组合赋权的岩爆倾向性预测灰评估模型。利用该模型,对国内外一些重大深部岩石工程岩爆案例进行分析,并与模糊综合评判法、属性综合评判法、未确知测度评价法和物元分析法及实际情况进行比较。研究结果表明,该模型预测结果与实际情况吻合较好,预测精度较高,从而验证该模型的有效性及实用性。研究方法为岩爆灾害的准确预测提供一种切实可行的途径。

关 键 词:岩爆倾向性  组合赋权  灰评估模型  欧几里得距离函数    
收稿时间:2013-08-19

A grey evaluation model for predicting rockburst proneness based on combination weight and its application
PEI Qi-tao , LI Hai-bo , LIU Ya-qun , ZHANG Guo-kai. A grey evaluation model for predicting rockburst proneness based on combination weight and its application[J]. Rock and Soil Mechanics, 2014, 35(Z1): 49-56
Authors:PEI Qi-tao    LI Hai-bo    LIU Ya-qun    ZHANG Guo-kai
Affiliation:1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; 2. Key Laboratory of Geotechnical Mechanics and Engineering of Ministry of Water Resources, Yangtze River Scientific Research Institute, Wuhan 430010, China
Abstract:
In order to reasonably determine the weights of index in the evaluation of the possibility and classification of rockburst, a combination weight method is proposed. Based on the theory of information entropy, the original formula is modified. Compared with the original formula, the modified formula is suitable under any conditions, which is more reasonable in theory. Then, Euclidean distance function is introduced to make the difference between the subjective and objective weight same as the difference between the favorable coefficients; and then the combination weight can be calculated. On the basis, the evaluation indexes are chosen in the analysis according to the causes of rockburst and its characteristics. Combining with the optimized grey clustering method, a grey evaluation model based on combination weight (GEM-CW) for predicting of rockburst proneness is established. Based on some deep rock projects at home and abroad, the GEM-CW model is adopted to predict the possibility and classification of rockburst. Compared with the fuzzy synthetic evaluation method, the attribute synthetic evaluation method, the unascertained measurement model and the matter-elements method, the prediction results of the GEM-CW model in the paper are close to the practical records, so as to prove that the proposed model is effective and available. Therefore, the proposed method provides a practical way to accurately predict the possibility and classification of rockburst in deep underground engineering.
Keywords:rockburst proneness  combination weight (GEM-CW)  grey evaluation model  Euclidean distance function  entropy
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《岩土力学》浏览原始摘要信息
点击此处可从《岩土力学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号