Magnetospheric substorm energy dissipation in the atmosphere |
| |
Authors: | M. H. Rees |
| |
Affiliation: | Laboratory for Atmospheric and Space Physics and Department of Astro-Geophysics, University of Colorado, Boulder, Colorado 80302, U.S.A. |
| |
Abstract: | The mechanisms of energy dissipation in the atmosphere for magnetospheric substorm energy sources are examined quantitatively, and the height-integrated energy budget is determined for average auroral conditions. Under steady-state conditions (1) at least 60% of the energy deposited by typical auroral particle bombardment heats the neutral atmosphere; about 11% maintains the enhanced level of ionization. Only about 4% is radiated in the visible, near i.r., and near u.v. spectral regions, which are detectable by ground-based and airborne observations, and 6% is known to be radiated in the medium and far u.v. spectrum. Another 3% of the energy is expended in maintaining enhanced electron and ion temperatures, bremsstrahlung radiation, and long-wave radio emissions. This leaves about 16% of the energy unaccounted for; it is argued that the bulk of this energy must reside in extreme u.v. radiation originating from highly excited atomic, molecular, and ionic states. Both laboratory and field evidence support this suggestion. (2) Orthogonal electric fields dissipate substantial energy in the atmosphere; the amount is governed by the ionospheric conductivity profile. In fact, the energy dissipated by electric fields can exceed the energy deposited by particle bombardment. About one-half of this energy goes into heating the neutral gas. (3) Plasma heat conduction is a small energy source that may have a large spatial extent. Its principal effect is heating of the electron gas, which, in turn, raises the electron temperature. Only 3% of the energy goes into radiation of OI(λ6300), the spectroscopic signature of SAR-ARCS. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|