Applications of thermodynamics to fundamental earth physics |
| |
Authors: | F. D. Stacey |
| |
Affiliation: | (1) Physics Dept., University of Queensland, 4067 Brisbane, Australia |
| |
Abstract: | New fundamental thermodynamic relationships of complete generality and absolute rigour of derivation are not to be expected, because the subject has such a secure and complete basis in classical physics. There is, however, still scope for original, fundamental work based on recognised assumptions and approximations which may be obviously acceptable in particular situations. Clarification of relationships between thermodynamic parameters for materials within the Earth is particularly important because there is so little possibility of measuring them individually. This survey first summarises the established relationships in a very condensed form and then concentrates on some recent developments which have direct bearing on the thermal and mechanical states of the Earth's mantle and core. Considerable use is made of the thermodynamic Grüneisen parameter, which is a dimensionless quantity of order unity for almost all materials, solid, liquid and gaseous, and is directly related to the pressure dependences of elastic constants. This allows its value to be estimated for the different regions of the Earth from seismological data. The thermodynamic (heat engine) efficiency of convection in a homogeneous medium, driving tectonic activity or the geomagnetic dynamo, is found to be the ideal (Carnot) efficiency corresponding to adiabatic temperature differences between the heat source and sink, within the assumption that the thermal expansion coefficient is not strongly temperature dependent. The use of this conclusion to infer tectonic stresses is indicated. The thermodynamic basis for Lindemann's melting law is restated and the reasons for supposing it to be valid for materials at megabar pressures reaffirmed. Application to the inner core boundary gives a fixed point on the Earth's temperature profile. Use of thermodynamic relationships in the interpretation of shock wave compressions is indicated. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|