首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Blowout mechanism of Alasehir (Turkey) geothermal field and its effects on groundwater chemistry
Authors:Rita Sandrina Rabet  Celalettin Simsek  Alper Baba  Alim Murathan
Institution:1.The Graduate School of Applied Science,Dokuz Eylul University,Izmir,Turkey;2.Department of Drilling, Torbali Technical Vocational School of Higher Education,Dokuz Eylul University,Torbali,Turkey;3.Department of Civil Engineering,Izmir Institute of Technology,Izmir,Turkey;4.General Directorate of State Hydraulic Works,Izmir,Turkey
Abstract:Anatolia region is one of the most seismically active regions in the world and has a considerably high level of geothermal energy potential. Some of these geothermal resources have been used for power generation and direct heating. Most of the high enthalpy geothermal systems are located in western part of Turkey. Alasehir is the most important geothermal site in western part of Turkey. Many geothermal wells have been drilled in Alasehir Plain to produce the geothermal fluid from the deep reservoir in the last 10 years. A blowout accident happened during a geothermal well drilling operation in Alasehir Plain, and significant amount of geothermal fluid surfaced out along the fault zone in three locations. When drilling string entered the reservoir rock about 1000 m, blowout occurred. As the well head preventer system was closed because of the blowout, high-pressure fluid surfaced out along the fault zone cutting the Neogene formation. In order to understand the geothermal fluid effects on groundwater chemistry, physical and chemical compositions of local cold groundwater were monitored from May 2012 to September 2014 in the study area. The geothermal fluid was found to be of Na–HCO3 water type, and especially, arsenic and boron concentrations reached levels as high as 3 and 127 mg/L, respectively. The concentrations of arsenic and boron in the geothermal fluid and groundwater exceeded the maximum allowable limits given in the national and international standards for drinking water quality. According to temporally monitored results, geothermal fluid has extremely high mineral content which influenced the quality of groundwater resources of the area where water resource is commonly used for agricultural irrigation.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号