首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The polar spirals of Mars may be due to glacier surges deflected by Coriolis forces
Authors:Ruud Weijermars
Abstract:All previous accounts of the spiral patterns at the Martian poles emphasize that the north polar spiral is centered about the geographic pole, whereas that of the south polar region is off-set by about 4°. This paper demonstrates that the patterns near both poles are centered on topographic highs rather than the spin poles themselves. This is circumstantial evidence in favour of the relatively unexplored mechanism of radial outflow of viscous rock by gravity spreading.The hypothesis developed here is that the spiral patterns are essentially due to crevasse patterns formed perpendicular to flow lines which are perturbed by Coriolis forces. In order to account for a crevasse pattern that has a form concave to the east the angular deflection of an hypothetical ice flow emanating from the topographic high centered about the geographical north pole, must be about 40° or 0.7 radians in a westward direction at 85°N latitude.The polar cap rock has previously been assumed to consist mainly of either frozen carbondioxide or water ice. Corresponding viscosities (at 190 K) allow for the occurrence of radial outflow or gravity driven tectonics at a maximum rate of 1 cm a−1, but the flow pattern remains unaffected by Coriolis forces.The spiral patterns of the Martian poles can be explained if the flowing mass has an occasional effective kinematic viscosity as low as about 7 × 106 m2 s−1, because gravity tectonics will then be deflected by Coriolis forces resulting in appropriately curved flowlines. A tensile fracture pattern, resembling an anticlockwise spiral pattern perpendicular to the clockwise deflected flowlines may subsequently form by local brittle failure.The occasional kinematic viscosity 7 × 106 m2 s−1 would cause flow rates of 0.2 m s−1 along the slopes of the topographic highs. This velocity and the corresponding viscosity is tentatively thought to be possible when thermal and pressure runaway occurs in the polar layered deposits. This would mean glacier surges on the Martian poles are two orders of magnitude faster than those hitherto observed on Earth.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号