首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进果蝇算法的非线性模型参数估计方法
引用本文:范千. 基于改进果蝇算法的非线性模型参数估计方法[J]. 大地测量与地球动力学, 2016, 36(12): 1092-1096
作者姓名:范千
摘    要:在对基本果蝇优化算法的寻优流程进行深入分析的基础上,提出一种单方向搜索处理的改进果蝇优化算法(IFOA)。该方法可以对极值点为非零非负的非线性函数进行优化处理,将其应用于非线性模型参数估计。实例表明,IFOA方法在参数估计精度上优于线性近似法与非线性迭代方法;与以遗传算法为代表的智能搜索方法相比,其估计精度相当,并具有参数设置少、寻优过程简单、易于程序实现等优点。

关 键 词:果蝇优化算法  单方向搜索处理  非线性模型  参数估计  智能搜索方法  

Parameter Estimation Method for Nonlinear Model Based on Improved Fruit Fly Optimization Algorithm
FAN Qian. Parameter Estimation Method for Nonlinear Model Based on Improved Fruit Fly Optimization Algorithm[J]. Journal of Geodesy and Geodynamics, 2016, 36(12): 1092-1096
Authors:FAN Qian
Abstract:Based on deep analysis of the optimization process of the basic fruit fly optimization algorithm, this paper supports an improved fruit fly optimization algorithm (IFOA) for search processing of a single direction. The IFOA method can process the nonlinear function that has nonzero and nonnegative extreme points. Based on this advantage, IFOA method is applied to parameter estimation of a nonlinear model. Analysis results of a practical example show that estimation accuracy of the IFOA method is superior to the linear approximation method and the nonlinear iterative method. Compared with intelligent search methods represented by a genetic algorithm, estimation accuracy is nearly equal. In addition, the IFOA method has several obvious advantages, including fewer parameter settings, ease of finding the best one, and easy programming.
Keywords:fruit fly optimization algorithm,search processing for single direction,nonlinear model   ,parameter estimation,intelligent search method,
本文献已被 CNKI 等数据库收录!
点击此处可从《大地测量与地球动力学》浏览原始摘要信息
点击此处可从《大地测量与地球动力学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号