首页 | 本学科首页   官方微博 | 高级检索  
     

基于特征点的高分辨率遥感影像城镇道路提取
引用本文:刘善磊,赵银娣,石善球,朱绍东,张亮. 基于特征点的高分辨率遥感影像城镇道路提取[J]. 测绘与空间地理信息, 2012, 35(9): 33-37,41. DOI: 10.3969/j.issn.1672-5867.2012.09.010
作者姓名:刘善磊  赵银娣  石善球  朱绍东  张亮
作者单位:1.江苏省基础地理信息中心,江苏南京,210013;2.中国矿业大学环境与测绘学院,江苏徐州,221008;3.山东方元地理信息工程有限责任公司,山东潍坊,261000
基金项目:江苏省测绘科研项目(JSCHKY 201219);中国矿业大学科学研究基金项目(2007 B 011)资助
摘    要:根据高分辨率遥感影像中城镇道路的特点,提出了一种基于特征点的道路信息提取方法。首先,对影像进行增强处理并选取感兴趣的子区域,利用改进的分水岭分割理论和阈值选择算法,结合八邻域检测方法得到道路的特征点;然后,利用回归分析方法在一定的坐标系统下得到每条道路的回归方程,根据端点坐标信息得到道路信息图;最后,利用数学形态学算法获取道路骨架图。结果表明,本方法能够精确有效地提取高分辨率遥感影像的城镇道路信息。

关 键 词:高分辨率遥感  分水岭分割  回归分析  数学形态学

Urban Road Extraction from High Resolution Remote Sensing Image Based on Feature Points
LIU Shan-lei,ZHAO Yin-di,SHI Shan-qiu,ZHU Shao-dong,ZHANG Liang. Urban Road Extraction from High Resolution Remote Sensing Image Based on Feature Points[J]. Geomatics & Spatial Information Technology, 2012, 35(9): 33-37,41. DOI: 10.3969/j.issn.1672-5867.2012.09.010
Authors:LIU Shan-lei  ZHAO Yin-di  SHI Shan-qiu  ZHU Shao-dong  ZHANG Liang
Affiliation:1(1.Foundational Geographic Information Center of Jiangsu Province,Nanjing 210013,China; 2.School of Environmental Science and Surveying and Mapping,China University of Mining and Technology, Xuzhou 221008,China;3.Shandong Fangyuan Geographic Information Engineering Co.Ltd.,Weifang 261000,China)
Abstract:In this paper,an approach of extracting urban road in the high resolution remote sensing image based on feature points is presented according to the characteristics of urban road.Firstly the road information in the image is enhanced and the interested sub-region is selected.Mathematic morphology algorithm is used.Secondly the road feature points are obtained based on improved watershed segmentation algorithm,threshold select algorithm and the detection of eight neighborhoods.Then the regression equation of road is calculated using regression analysis in the definite reference frame,and the road information map is described based on the coordinate of endpoint.Finally the skeleton of road is done by morphological thinning and cropping.Experimental results show that the proposed method based on coordinates of feature points performs effectively on road extraction from high resolution remote sensing imagery.
Keywords:high resolution remote sensing  watershed segmentation  regression analysis  mathematic morphology
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号