首页 | 本学科首页   官方微博 | 高级检索  
     

粒子群神经网络及其在非线性系统辨识中的应用
引用本文:佘远俊,张翠芳,鄢田云. 粒子群神经网络及其在非线性系统辨识中的应用[J]. 成都信息工程学院学报, 2006, 21(2): 244-246
作者姓名:佘远俊  张翠芳  鄢田云
作者单位:西南交通大学计算机与通信工程学院智能控制实验室,四川,成都,610031
摘    要:介绍了一种新的神经网络权值优化算法——粒子群优(Particle Swarm Optimization,PSO)算法,提出了用粒子群神经网络对非线性系统进行系统辨识的构思。仿真实验结果表明,粒子群算法具有比BP算法更强的非线性系统辨识能力和更好的泛化能力。

关 键 词:粒子群  神经网络  非线性系统  辨识
文章编号:1671-1742(2006)02-0244-03
修稿时间:2005-03-03

Neural network trained with particle swarm algorithm and its application to nonlinear system identification
SHE Yuan-jun,ZHANG Cui-fang,YAN Tian-yun. Neural network trained with particle swarm algorithm and its application to nonlinear system identification[J]. Journal of Chengdu University of Information Technology, 2006, 21(2): 244-246
Authors:SHE Yuan-jun  ZHANG Cui-fang  YAN Tian-yun
Abstract:A new neural networks learning algorithm based on the particle swarm optimization(PSO) is presented and applied to the nonlinear system identification.The experiment results show that the PSO algorithm has better capability for identifying nonlinear system and better generalization ability than the BP algorithm.
Keywords:particle swarm  neural network  nonlinear system  identification  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号