首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Evolution of Wear and Friction Along Experimental Faults
Authors:Y Boneh  J C Chang  D A Lockner  Z Reches
Institution:1. School of Geology and Geophysics, University of Oklahoma, 100 E Boyd St., Norman, OK, 73019, USA
3. Earth and Planetary Sciences, Washington University, One Brooking Drive, St. Louis, MO, 63130, USA
2. US Geological Survey, 345 Middlefield Rd., Menlo Park, CA, 94025, USA
Abstract:We investigate the evolution of wear and friction along experimental faults composed of solid rock blocks. This evolution is analyzed through shear experiments along five rock types, and the experiments were conducted in a rotary apparatus at slip velocities of 0.002–0.97 m/s, slip distances from a few millimeters to tens of meters, and normal stress of 0.25–6.9 MPa. The wear and friction measurements and fault surface observations revealed three evolution phases: A) An initial stage (slip distances <50 mm) of wear by failure of isolated asperities associated with roughening of the fault surface; B) a running-in stage of slip distances of 1–3 m with intense wear-rate, failure of many asperities, and simultaneous reduction of the friction coefficient and wear-rate; and C) a steady-state stage that initiates when the fault surface is covered by a gouge layer, and during which both wear-rate and friction coefficient maintain quasi-constant, low levels. While these evolution stages are clearly recognizable for experimental faults made from bare rock blocks, our analysis suggests that natural faults “bypass” the first two stages and slip at gouge-controlled steady-state conditions.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号