首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The Backus–Gilbert approach to the three-dimensional structure in the upper mantle – I. Lateral variation of surface wave phase velocity with its error and resolution
Authors:Toshiro Tanimoto
Institution:Seismological Laboratory, California Institute of Technology, Pasadena, California 91125, USA
Abstract:Summary. The Backus–Gilbert method is applied to obtain the phase velocity variations on a sphere from the measured phase velocity. Narrow peak kernels, with radii of about 2000 km, are obtained for almost everywhere on the sphere. The phase velocity results are thus interpreted as an average within such regions. The most trouble comes from the antipodal peak in the resolution kernel. This is evaluated as contamination and is incorporated in the error estimation. The total error, which is a root mean square of contamination from the antipodal peak and statistical error estimated from the data covariance matrix, is about 1 per cent of the phase velocity in the average earth model, which is the Preliminary Reference Earth Model (PREM). However, there is about a factor of 2 variation of errors on the sphere. Maximum variations of phase velocity are about 3–4 per cent of the phase velocity in the average earth model, and thus there still remain anomalies which exceed estimated errors. The estimated errors correspond to one standard deviation under the assumptions of uncorrelated Gaussian distribution. For high confidence interval, they show that statistically significant anomalies are scarce for the current data set. Generally, Love-wave phase velocity maps show more resolved features than Rayleigh-wave maps and we can see, in high confidence maps, fast velocities in old oceans and old continents and slow velocities in tectonically active regions like the East Pacific Rise and various back-arc regions.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号