首页 | 本学科首页   官方微博 | 高级检索  
     

基于循环神经网络的找矿模型构建与预测
引用本文:张亚光,陈建平,贾志杰,李诗,刘苏庆,张志平,张烨. 基于循环神经网络的找矿模型构建与预测[J]. 地质通报, 2019, 38(12): 2033-2042
作者姓名:张亚光  陈建平  贾志杰  李诗  刘苏庆  张志平  张烨
作者单位:中国地质大学(北京)地球科学与资源学院, 北京 100083;北京市国土资源信息研究开发重点实验室, 北京 100083,中国地质大学(北京)地球科学与资源学院, 北京 100083;北京市国土资源信息研究开发重点实验室, 北京 100083,中国地质大学(北京)地球科学与资源学院, 北京 100083;北京市国土资源信息研究开发重点实验室, 北京 100083,中国地质大学(北京)地球科学与资源学院, 北京 100083;北京市国土资源信息研究开发重点实验室, 北京 100083,中国地质大学(北京)地球科学与资源学院, 北京 100083;北京市国土资源信息研究开发重点实验室, 北京 100083,页岩气勘探开发国家地方联合工程研究中心(重庆地质矿产研究院), 重庆 401120,页岩气勘探开发国家地方联合工程研究中心(重庆地质矿产研究院), 重庆 401120
基金项目:国家科技部深地资源勘探开采专项《深部成矿地质异常定量预测方法与模型》(编号:2017YFC0601502)
摘    要:在大数据和人工智能背景下,基于已有的传统地质找矿模型建立与应用基础,提出基于循环神经网络的找矿模型构建与预测方法,实现对地质数据的深入分析和理解。针对地质找矿模型构建与预测的需求,结合数据清洗理论,对传统地质找矿模型进行归纳与总结,建立地质找矿知识库,为深度学习算法提供训练数据。通过分类算法研究,综合对比结果的准确率与分类所用时间,最终选用RNN分类算法对找矿概念模型进行分类。在建立研究区找矿模型中,通过关键词与控矿要素完成模型匹配,利用模型计算对模型匹配结果进行数据分析,实现区域地质找矿模型的构建与矿产资源的预测评价和分析。以大水金矿为例,快速准确地实现了找矿模型的构建,有效地对矿产资源预测工作提供了指导,验证了该方法的可行性。

关 键 词:找矿概念模型  RNN分类算法  控矿要素  模型匹配
收稿时间:2019-04-17
修稿时间:2019-07-25

Construction and prediction of a prospecting model based on recurrent neural network
ZHANG Yaguang,CHEN Jianping,JIA Zhijie,LI Shi,LIU Suqing,ZHANG Zhiping and ZHANG Ye. Construction and prediction of a prospecting model based on recurrent neural network[J]. Geologcal Bulletin of China, 2019, 38(12): 2033-2042
Authors:ZHANG Yaguang  CHEN Jianping  JIA Zhijie  LI Shi  LIU Suqing  ZHANG Zhiping  ZHANG Ye
Affiliation:School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China;Beijing Key Laboratory of Development and Research for Land Resources Information, Beijing 100083, China,School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China;Beijing Key Laboratory of Development and Research for Land Resources Information, Beijing 100083, China,School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China;Beijing Key Laboratory of Development and Research for Land Resources Information, Beijing 100083, China,School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China;Beijing Key Laboratory of Development and Research for Land Resources Information, Beijing 100083, China,School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China;Beijing Key Laboratory of Development and Research for Land Resources Information, Beijing 100083, China,National and Local Joint Engineering Research Center of Shale Gas Exploration and Development, Chongqing Geology and Mineral Research Institute, Chongqing 401120, China and National and Local Joint Engineering Research Center of Shale Gas Exploration and Development, Chongqing Geology and Mineral Research Institute, Chongqing 401120, China
Abstract:Under the background of big data and artificial intelligence and on the basis of the establishment and application basis of existing traditional geological prospecting model, this paper proposes a prospecting model construction and prediction method based on cyclic neural network, with the purpose of achieving in-depth analysis and understanding of geological data. According to the requirements for construction and prediction of geological prospecting model, the authors combined the data cleaning theory to systematically summarize and summarize the traditional geological prospecting model, thus establishing a geological prospecting knowledge base and providing training data for deep learning algorithms. The accuracy of the comparison results and the time used for classification were comprehensively analyzed. Finally, the RNN classification algorithm was selected to classify the conceptual model of prospecting. In the process of establishing the prospecting model of the study area, by using the key words and ore control elements to complete the model matching, the model was used to analyze the model matching results so as to realize the construction of the regional geological prospecting model and the prediction and analysis of the mineral resources. With the Dashui gold deposit as an example, the construction of the prospecting model was realized quickly and accurately, which effectively provides guidance for the prediction of mineral resources and verifies the feasibility of the method.
Keywords:prospecting model  RNN classification algorithm  ore control elements  model matching
本文献已被 CNKI 等数据库收录!
点击此处可从《地质通报》浏览原始摘要信息
点击此处可从《地质通报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号