首页 | 本学科首页   官方微博 | 高级检索  
     


Stratigraphic evolution of an outcropping continental slope system, Tres Pasos Formation at Cerro Divisadero, Chile
Authors:BRIAN W. ROMANS,STEPHEN M. HUBBARD&dagger  , STEPHAN A. GRAHAM
Affiliation:Dept. of Geological &Environmental Sciences, Stanford University, 450 Serra Mall, Bldg 320, Stanford, CA 94305, USA (E-mail: );
Dept. of Geoscience, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4 Canada
Associate Editor: Ole Martinsen
Abstract:
Depositional slope systems along continental margins contain a record of sediment transfer from shallow‐water to deep‐water environments and represent an important area for natural resource exploration. However, well‐preserved outcrops of large‐scale depositional slopes with seismic‐scale exposures and tectonically intact stratigraphy are uncommon. Outcrop characterization of smaller‐scale depositional slope systems (i.e. < 700 m of undecompacted shelf‐to‐basin relief) has led to increased understanding of stratigraphic packaging of prograding slopes. Detailed stacking patterns of facies and sedimentary body architecture for larger‐scale slope systems, however, remain understudied. The Cretaceous Tres Pasos Formation of the Magallanes Basin, southern Chile, presents a unique opportunity to evaluate the stratigraphic evolution of such a slope system from an outcrop perspective. Inherited tectonic relief from a precursor oceanic basin phase created shelf‐to‐basin bathymetry comparable with continental margin systems (~1000 m). Sedimentological and architectural data from the Tres Pasos Formation at Cerro Divisadero reveal a record of continental margin‐scale depositional slope progradation and aggradation. Slope progradation is manifested as a vertical pattern exhibiting increasing amounts of sediment bypass upwards, which is interpreted as reflecting increasing gradient conditions. The well‐exposed, seismic‐scale outcrop is characterized by four 20 to 70 m thick sandstone‐rich successions, separated by mudstone‐rich intervals of comparable thickness (40 to 90 m). Sedimentary body geometry, facies distribution, internal bedding architecture, sandstone richness and degree of amalgamation were analysed in detail across a continuous 2·5 km long transect parallel to depositional dip. Deposition in the lower section (Units 1 and 2) was dominated by poorly channellized to unconfined sand‐laden flows and accumulation of mud‐rich mass transport deposits, which is interpreted as representing a base of slope to lower slope setting. Evidence for channellization and indicators of bypass of coarse‐grained turbidity currents are more common in the upper part of the > 600 m thick succession (Units 3 and 4), which is interpreted as reflecting increased gradient conditions as the system accreted basinward.
Keywords:Deep-water stratigraphy    foreland basin    Magallanes Basin    progradation    slope deposits    turbidite architecture    turbidite processes
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号