首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Geochemical evidence of hydrothermal recharge in Lake Baringo,central Kenya Rift Valley
Authors:Corinne Tarits  Robin W Renaut  Jean‐Jacques Tiercelin  Alain Le Hriss  Jo Cotten  Jean‐Yves Cabon
Institution:Corinne Tarits,Robin W. Renaut,Jean‐Jacques Tiercelin,Alain Le Hérissé,Jo Cotten,Jean‐Yves Cabon
Abstract:Lake Baringo, a freshwater lake in the central Kenya Rift Valley, is fed by perennial and ephemeral rivers, direct rainfall, and hot springs on Ol Kokwe Island near the centre of the lake. The lake has no surface outlet, but despite high evaporation rates it maintains dilute waters by subsurface seepage through permeable sediments and faulted lavas. New geochemical analyses (major ions, trace elements) of the river, lake, and hot spring waters and the suspended sediments have been made to determine the main controls of lake water quality. The results show that evaporative concentration and the binary mixing between two end members (rivers and thermal waters) can explain the hydrochemistry of the lake waters. Two zones are recognized from water composition. The southern part of the lake near sites of perennial river inflow is weakly influenced by evaporation, has low total dissolved species (TDS), and has a seasonally variable load of mainly detrital suspended sediments. In contrast, waters of the northern part of the lake show evidence for strong evaporation (TDS of up to eight times inflow). Authigenic clay minerals and calcite may be precipitating from those more concentrated fluids. The subaerial hot‐spring waters have a distinctive chemistry and are enriched in some elements that are also present in the lake water. Comparison of the chemical composition of the inflowing surface waters and lake water shows (1) an enrichment of some species (HCO3?, Cl, SO42?, F, Na, B, V, Cr, As, Mo, Ba and U) in the lake, (2) a depletion in SiO2 in the lake, and (3) a possible hydrothermal origin for most F. The rare earth element distribution and the F/Cl and Na/Cl ratios give valuable information on the rate of mixing of the river and hydrothermal fluids in the lake water. Calculations imply that thermal fluids may be seeping upward locally into the lake through grid‐faulted lavas, particularly south of Ol Kokwe Island. Copyright © 2006 John Wiley & Sons, Ltd.
Keywords:groundwater–  surface water relations  hydrochemistry  rift basins  geothermal fluids  Kenya  Lake Baringo
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号