首页 | 本学科首页   官方微博 | 高级检索  
     检索      

铀的地球化学性质与成矿——以华南铀成矿省为例
引用本文:王鲲,邓江洪,郝锡荦.铀的地球化学性质与成矿——以华南铀成矿省为例[J].岩石学报,2020,36(1):35-43.
作者姓名:王鲲  邓江洪  郝锡荦
作者单位:中国科学院海洋研究所, 深海研究中心, 青岛 266071;中国科学院大学, 北京 100049,中国科学院海洋研究所, 深海研究中心, 青岛 266071,自然资源部天然气水合物重点实验室, 青岛海洋地质研究所, 青岛 266071;青岛海洋科学与技术试点国家实验室, 海洋矿产资源评价与探测功能实验室, 青岛 266071
基金项目:本文受国家重点研发计划"深地资源勘查开采"重点专项(2016YFC0600408)资助.
摘    要:铀是强不相容元素,随着岩浆演化而不断富集,在岩浆演化末期受结构氧增加影响进入独居石、磷钇矿等副矿物中。岩浆演化通常无法直接形成达到工业品位的铀矿床。铀是对氧逸度敏感的变价元素。在表生风化过程中岩体(层)中的铀被氧化为UO_2~(2+)而极易溶解进入水体中,并可在还原环境沉淀而富集成矿,氧化还原界面是找矿的理想选区。大气水可通过断裂构造系统进入一定深度,并受热源作用形成高氧逸度的热液而萃取出岩体(层)中的铀在还原位置沉淀富集形成矿床。新元古代氧化事件以及Marinoan冰期结束使得表生风化过程中更多的U进入水体;而寒武纪生命大爆发,易在沉积盆地底部形成还原环境,有利于U的沉淀富集。受上述三方面因素控制,在华南形成了广泛分布的富铀黑色页岩层,并被之后的沉积物覆盖,成为华南各型铀矿床的铀源层。印支期构造运动使部分富铀黑色页岩层发生部分熔融形成了富铀的S型花岗岩,该类岩石亦是之后铀成矿作用的铀源岩。燕山运动后期华南发生伸展构造背景下的岩浆热事件为以大气水为主的高氧逸度热液的形成并作用于铀源岩(层)提供了有利条件,促使华南各类型铀矿床开始在白垩纪集中形成。

关 键 词:  铀矿床  氧逸度  华南  富铀黑色页岩层
收稿时间:2019/5/1 0:00:00
修稿时间:2019/10/20 0:00:00

The geochemical behavior of uranium and mineralization: South China uranium province as an example
WANG Kun,DENG JiangHong and HAO XiLuo.The geochemical behavior of uranium and mineralization: South China uranium province as an example[J].Acta Petrologica Sinica,2020,36(1):35-43.
Authors:WANG Kun  DENG JiangHong and HAO XiLuo
Institution:Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;University of Chinese Academy of Sciences, Beijing 100049, China,Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China and Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Qingdao Institute of Marine Geology, Qingdao 266071, China;Laboratory for Marine Mineral Resources, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
Abstract:Uranium is a strong incompatible element, which is continuously enriched with the evolution of magma. At the end of magma evolution, uranium is affected by the increase of structural oxygen and enters accessory minerals, such as monazite and xenotime. Magmatic evolution usually can''t lead to the formation of uranium deposits. Uranium is a variable valence element which is sensitive to oxygen fugacity. During supergene weathering process, uranium in rock is oxidized to UO22+ and easily dissolved into high oxygen fugacity fluid, which is then precipitated and enriched in reducing environments, favorable for mineralization. Influenced by the Neoproterozoic Oxidation Event and the end of Marinoan ice age, more U entered water during supergene weathering. The Cambrian Explosion resulted in reducing environment in sedimentary basins, forming black shale rich in organic matter, which was favorable to the precipitation and enrichment of U, responsible for the formation of Sinian and Lower Cambrian uranium-rich black shale in South China. The uranium-rich black shale was the main uranium source for uranium deposits in South China. The Indosinian tectonic movement caused partial melting of some uranium-rich black shale, forming S-type granites, which were also the uranium source for the subsequent uranium mineralization. The tectonic-magmatic thermal events in an extensional setting in South China during the Late Yanshanian Movement provided favorable conditions for the formation of high oxygen fugacity hydrothermal fluids, which resulted in the formation of various types of uranium deposits in South China in Cretaceous. High oxygen fugacity hydrothermal fluids mainly composed of meteoric water can migrate through fissure system and extract U from uranium source rocks by oxidation of U4+ to U6+. The reductive materials related to organic-rich black shale, basic dyke and volcanic degassing are responsible for the precipitation and mineralization of U.
Keywords:Uranium  Uranium deposits  Oxygen fugacity  South China  Uranium-rich black shale
本文献已被 CNKI 等数据库收录!
点击此处可从《岩石学报》浏览原始摘要信息
点击此处可从《岩石学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号