首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Impact of climate change on streamflow in the arid Shiyang River Basin of northwest China
Authors:Zhonggen Wang  Darren L Ficklin  Yongyong Zhang  Minghua Zhang
Institution:1. Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographical Science and Natural Resources Research, Chinese Academy of Science, , Beijing, China;2. Department of Land, Air and Water Resources, University of California, , Davis, CA, USA
Abstract:Climate change may significantly affect the hydrological cycle and water resource management, especially in arid and semi‐arid regions. In this paper, output from the Providing Regional Climates for Impacts Studies (PRECIS) regional climate model were used in conjunction with the Soil and Water Assessment Tool (SWAT) to analyse the effects of climate change on streamflow of the Xiying and Zamu rivers in the Shiyang River basin, an important arid region in northwest China. After SWAT model calibration and validation, streamflow in the Shiyang River Basin was simulated using the PRECIS climate model data for greenhouse gas emission scenarios A2 (high emission rate) and B2 (low emission rate) developed by Intergovernmental Panel on Climate Change. Monthly streamflow and hydrological extremes were compared for present‐day years (1961–1990), the 2020s (2011–2040), 2050s (2041–2070) and 2080s (2071–2100). The results show that mean monthly streamflow in Shiyang River Basin generally increased in the 2020s, 2050s and 2080s between 0.7–6.1% at the Zamu gauging station and 0.1–4.8% at the Xiying gauging station. The monthly minimum streamflow increased persistently, but the maximum monthly streamflows increased in the 2020s and slightly decreased in the 2050s and 2080s. This study provides valuable information for guiding future water resource management in the Shiyang River Basin and other arid and semi‐arid regions in China. Copyright © 2011 John Wiley & Sons, Ltd.
Keywords:climate change  streamflow  SWAT  PRECIS  Shiyang River Basin
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号