首页 | 本学科首页   官方微博 | 高级检索  
     


Hydrologic simulation of clay‐settling areas in the phosphate mining district,Florida
Authors:Jing Zhang  Mark Ross
Affiliation:1. The Key Laboratory of Resource Environment and GIS of Beijing, Capital Normal University, , Beijing, 100048 China;2. Department of Civil and Environmental Engineering, University of South Florida, , Tampa, FL, 33620 USA
Abstract:
Clay‐settling areas (CSAs) are one of the most conspicuous and development‐limiting landforms remaining after phosphate mining. Many questions are asked by the mining and regulatory communities with regard to the correct modelling (predictive) methods and assumptions that should be used to yield viable hydrologic post‐reclamation landforms within CSAs. Questions as to the correct methodology to use in modelling/predicting long‐term CSA hydrologic performance have historically been difficult to answer because the data and analysis to support popular hypotheses did not exist. The goal of this paper was to substantially improve the data, analysis and predictive methodology necessary to return CSAs to viable hydrologic units, and moreover, to develop better understanding of the hydrology of CSAs and their ability to support wetlands. The study site is located at the Fort Meade Mine in Polk County, Florida. In this paper, continuous model simulation and calibration of study site were conducted for the hydrologic model, Hydrological Simulation Program – FORTRAN, which was generally selected on the basis of its popularity in predicting the hydrologic behaviour of CSAs. The objective of this study was to simulate streamflow discharges and stage to estimate runoff response from these areas on the basis of the observed rainfall within the CSA. A set of global hydrologic parameters was selected and tested during the calibration by the parameter estimation software PEST. A comparison of the simulated and observed flow data indicates that the model calibration adequately reproduces the hydrologic response of the CSAs. The estimated parameters can be used as references for future application of the model. Copyright © 2012 John Wiley & Sons, Ltd.
Keywords:clay‐settling areas  HSPF model  discharge  hydrologic parameter  PEST
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号