首页 | 本学科首页   官方微博 | 高级检索  
     检索      

水泥土在侵蚀环境中的试验研究和等效分析
引用本文:刘泉声,柳志平,程勇,贾瑞华.水泥土在侵蚀环境中的试验研究和等效分析[J].岩土力学,2013,34(7):1854-1860.
作者姓名:刘泉声  柳志平  程勇  贾瑞华
作者单位:1. 武汉大学 土木建筑工程学院,武汉 430072;2. 中交第二公路勘察设计研究院有限公司,武汉 430056
基金项目:2010年度教育部“长江学者和创新团队发展计划”创新团队项目(No. IRT1031);中交建设股份特大科技项目“港珠澳大桥珠海连接线隧道工程建设关键技术研究”;中央高校基本科研业务费专项资金(No.20112100202006)。
摘    要:拱北隧道是港珠澳大桥连接线的重要组成部分,隧道基底采用水泥土加固体处理。在加固体所处的环境中,由于地下承压水与海水相连,海水中所含的侵蚀性离子易对加固体产生一定的影响。通过室内试验和理论推导,研究侵蚀环境下水泥土的力学性能和耐久性。自制水泥土试块并模拟侵蚀环境,水泥土试块在侵蚀环境中浸泡时间分别为90、180、270 d,对浸泡后的水泥土试块进行无侧限抗压试验。试验结果表明:在侵蚀环境的影响下,水泥土试块强度的最大值出现在90~ 270 d之间。浸泡时间超过90 d,氯化镁和氯化钠的混合溶液(MCN)使水泥土试块的抗压强度表现出明显的衰减响应。在低浓度(1.5 g/L和4.5 g/L)条件下,MSN中的硫酸镁与水泥土中的3CaO?2SiO2?3H2O充分反应,使水泥土的抗压强度达到最高值,同比情况下对水泥土的抗压强度损伤最小。在相同的浓度下,氯化镁对水泥土试块的抗压强度影响比硫酸镁大。从化学动力学基本原理出发,基于硫酸镁与水泥水化产物的化学反应过程,推导得出侵蚀性溶液浓度与侵蚀时间之间的关系式(C1/C2)β=t2/t1,即当水泥土被侵蚀后达到同等抗压强度时,侵蚀性物质浓度的反应级数次方与侵蚀时间成反比。根据公式,可以通过较高浓度的侵蚀性溶液对水泥土试样浸泡较短时间条件下的强度试验结果,预测分析较低浓度的侵蚀性溶液对水泥土试样浸泡较长时间条件下的水泥土强度。最后结合试验数据对理论结果进行了验证。

关 键 词:水泥土  侵蚀性  力学试验  化学动力学  等效分析  
收稿时间:2012-07-30

Experimental study and equivalent analysis of cemented soil under corrosion environment
LIU Quan-sheng , LIU Zhi-ping , CHENG Yong , JIA Rui-hua.Experimental study and equivalent analysis of cemented soil under corrosion environment[J].Rock and Soil Mechanics,2013,34(7):1854-1860.
Authors:LIU Quan-sheng  LIU Zhi-ping  CHENG Yong  JIA Rui-hua
Institution:1. School of Civil and Architectural Engineering, Wuhan University, Wuhan 430072, China; 2. CCCC Second Highway Consultants Co., Ltd., Wuhan 430056, China
Abstract:Gongbei tunnel is an important part of Hong Kong-Zhuhai-Macao Bridge cable; its foundation pit bottom is dealt with cemented soil. The aggressive ions of the sea will easily have an effect on the cemented soil as the underground pressure water is connected to the brine. Through the laboratory experiment and theoretical deduction, the mechanical properties and durability of cemented soil in the corrosion environment are studied as follows. Laboratory cemented soil and corrosion environment are made to test the unconfined compression strength of the samples soaked at 90 d, 180 d and 270 d respectively. Result of this laboratory experiment indicates that: under the influence of erosion environment, the maximum value of uniaxial compressive strength of cement soil will be reached between 90 d and 270 d. After the soak period exceeds 90 d, the solution that contains MCN shows up an entirely negative effect on the compressive strength of cemented soil. Under low concentration (1.5 g/L and 4.5 g/L), the chemical reaction between MSN and cemented soil achieves an optimum value; in comparative conditions the compression strength damage of cement soil is minimal. The effect of magnesium chloride on compressive strength of the cemented soil samples is much larger than that of magnesium sulfate. Based on the principle of chemical kinetics and the chemical equation between magnesium sulfate and the cement hydration products, combined with the assumptions, the relationship between ion concentration and corrosion time is deduced as (C1/C2)β=t2/t1; that is, when the soil samples are eroded to equivalent compression strength, the reaction order of concentration is inversely proportional to corrosion time. According to the formula, the strength of cemented soil soaking in low concentration solution for a long time is predicted by the strength of cemented soil soaking in high concentration solution for a short time. At last, the theoretical results are verified by experimental data.
Keywords:cemented soil  erosion  mechanical test  chemical kinetics  equivalent analysis
本文献已被 万方数据 等数据库收录!
点击此处可从《岩土力学》浏览原始摘要信息
点击此处可从《岩土力学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号