首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Magma chamber processes in central volcanic systems of Iceland: constraints from layered gabbro of the Austurhorn intrusive complex
Authors:Sigurjon B Thorarinsson  Christian Tegner
Institution:1.Department of Earth Sciences,University of Aarhus,?rhus C,Denmark;2.Nordic Volcanological Center,University of Iceland,Reykjavik,Iceland;3.Department of Geography and Geology,University of Copenhagen,K?benhavn K,Denmark
Abstract:New field work and petrological investigations of the largest gabbro outcrop in Iceland, the Hvalnesfjall gabbro of the 6–7 Ma Austurhorn intrusive complex, have established a stratigraphic sequence exceeding 800 m composed of at least 8 macrorhythmic units. The bases of the macrorhythmic units are composed of 2–10 m thick melanocratic layers rich in clinopyroxene and sometimes olivine, relative to the thicker overlying leucocratic oxide gabbros. While the overall compositional variation is limited (Mg# clinopyroxene 72–84; An% plagioclase 56–85), the melanocratic bases display spikes in Mg# and Cr2O3 of clinopyroxene and magnetite indicative of magma replenishment. Some macrorhythmic units show mineral trends indicative of up-section fractional crystallisation over up to 100 m, whereas others show little variation. Two populations of plagioclase crystals (large, An-rich and small, less An-rich) indicate that the recharge magma carried plagioclase xenocrysts (high An-type). The lack of evolved gabbros suggests formation in a dynamic magma chamber with frequent recharge, tapping and fractionation. Modelling of these compositional trends shows that the parent magma was similar to known transitional olivine basalts from Iceland that had undergone about 20% crystallisation of olivine, plagioclase and clinopyroxene and that the macrorhythmic units formed from thin magma layers not exceeding 200–300 m. Such a “mushy” magma chamber is akin to volcanic plumbing systems in settings of high magma supply rate including the mid-ocean ridges and present-day magma chambers over the Iceland mantle plume. The Austurhorn central volcano likely formed in an off-rift flank zone proximal to the Iceland mantle plume during a major rift relocation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Keywords:Iceland  Austurhorn  Layered gabbro  Central volcano  Magma chamber  RTF processes
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号