首页 | 本学科首页   官方微博 | 高级检索  
     

WRF-EnKF系统对中国南方一次暴雨过程确定性预报的试验
引用本文:宝兴华,杨舒楠. WRF-EnKF系统对中国南方一次暴雨过程确定性预报的试验[J]. 气象, 2015, 41(5): 566-576
作者姓名:宝兴华  杨舒楠
作者单位:中国气象科学研究院灾害天气国家重点实验室,北京 100081,国家气象中心,北京 100081
基金项目:国家自然科学基金青年科学基金项目(41405050)、中国气象局气象关键技术集成与应用项目(CMAGJ2013ZX ZH1)、中国气象科学研究院基本科研业务经费专项(2014Z003)和公益性行业(气象)科研专项(GYHY201406013)共同资助
摘    要:文章利用美国宾州州立大学的WRF EnKF(Ensemble Kalman Filter)实时预报系统(Real time Penn State WRF EnKF System),针对2013年5月15—16日发生在中国南方的暴雨过程进行了数值预报试验,以初步检验该系统对我国南方降水确定性预报的效果。数值试验采用2013年5月14日08时(北京时)起报的6 h间隔的1°×1° NCEP GFS (globle forecast system) 60 h预报数据(预报到5月16日20时)作为初始条件和边界条件。其中,控制试验不同化任何观测资料,同化试验通过集合卡尔曼滤波方法同化常规探空资料,分别进行确定性预报。结果表明:利用WRF EnKF系统同化常规探空资料,显著改善了数值预报的初始场,减小了各物理量的预报偏差和预报均方根误差,进而提高了此次暴雨过程的降水落区和强度的预报准确率。

关 键 词:资料同化, 集合卡尔曼滤波, 探空资料, 降水确定性预报
收稿时间:2014-09-04
修稿时间:2015-03-16

Deterministic Prediction Experiment of One Torrential Rainfall Event in Southern China Using a WRF EnKF System
BAO Xinghua and YANG Shunan. Deterministic Prediction Experiment of One Torrential Rainfall Event in Southern China Using a WRF EnKF System[J]. Meteorological Monthly, 2015, 41(5): 566-576
Authors:BAO Xinghua and YANG Shunan
Affiliation:State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081 and National Meteorological Centre, Beijing 100081
Abstract:Two convection permitting numerical experiments were conducted with the WRF model to examine the impact of assimilating sounding data by using an EnKF method for deterministic prediction of a torrential rainfall event over southern China during 15-16 May 2013. The initial and lateral boundary conditions were based on the NCEP GFS 1°×1° 60 h gridded forecast data which were available every 6 h from 08:00 BT 14 May to 20:00 BT 16 May 2013. The two experiments, NODA and DA, differed only in the initial conditions: while NODA was initialized from the NCEP GFS data at 08:00 BT 14 May, DA was from an ensemble mean of 30 analysis members at 08:00 BT 15 May, which was generated using the WRF EnKF system with conventional sounding data at 20:00 BT 14 May, 02:00 BT and 08:00 BT 15 May assimilated. The results show that, compared to NODA, not only the initial conditions of DA are much closer to the observed fields, but also the DA predicted physical parameters are improved in terms of both biases and root mean square errors, leading to a more accurate prediction of the location and magnitude of precipitation from DA.
Keywords:data assimilation   ensemble Kalman filter   sounding data   precipitation deterministic prediction
本文献已被 万方数据 等数据库收录!
点击此处可从《气象》浏览原始摘要信息
点击此处可从《气象》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号