首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Quantifying hydrogen‐deuterium exchange of meteoritic dicarboxylic acids during aqueous extraction
Authors:Megan FULLER  Yongsong HUANG
Abstract:Abstract— Hydrogen isotope ratios of organic compounds in carbonaceous chondrites provide critical information about their origins and evolutionary history. However, because many of these compounds are obtained by aqueous extraction, the degree of hydrogen‐deuterium (H/D) exchange that occurs during the process needs to be quantitatively evaluated. This study uses compound‐specific hydrogen isotopic analysis to quantify the H/D exchange during aqueous extraction. Three common meteoritic dicarboxylic acids (succinic, glutaric, and 2‐methyl glutaric acids) were refluxed under conditions simulating the extraction process. Changes in δD values of the dicarboxylic acids were measured following the reflux experiments. A pseudo‐first order rate law was used to model the H/D exchange rates which were then used to calculate the isotope exchange resulting from aqueous extraction. The degree of H/D exchange varies as a result of differences in molecular structure, the alkalinity of the extraction solution and presence/absence of meteorite powder. However, our model indicates that succinic, glutaric, and 2‐methyl glutaric acids with a δD of 1800%***o would experience isotope changes of 38o, 10o, and 6o, respectively during the extraction process. Therefore, the overall change in δD values of the dicarboxylic acids during the aqueous extraction process is negligible. We also demonstrate that H/D exchange occurs on the chiral α‐carbon in 2‐methyl glutaric acid. The results suggest that the racemic mixture of 2‐methyl glutaric acid in the Tagish Lake meteorite could result from post‐synthesis aqueous alteration. The approach employed in this study can also be used to quantify H/D exchange for other important meteoritic compounds such as amino acids.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号