首页 | 本学科首页   官方微博 | 高级检索  
     


An insight into crack density,saturation rate,and porosity model of the 2001 Bhuj earthquake in the stable continental region of western India
Affiliation:1. Department of Earth and Planetary Science, University of California, Berkeley, CA 94720-4767, USA;2. Berkeley Seismological Laboratory, University of California, Berkeley, CA 94720-4767, USA;3. Department of Geosciences, National Taiwan University, Taipei 10617, Taiwan
Abstract:
The 2001 Bhuj earthquake (Mw 7.6) source zone is examined in the light of crack density (ε), saturation rate (ξ) and porosity parameter (ψ) using new data set derived from a large aftershock sequence recorded by the Gujarat seismic network (GSNet) during November, 2006–December, 2009. Processes of rupture initiations of the mainshock and its aftershock sequence are better understood by synthesizing the dynamic snapshots of the source zone using the new dataset. Pattern of crustal heterogeneities associated with high-ε, high-ξ and high-ψ anomalies at depths varying from 20 km to 25 km is similar to those of earlier study by Mishra and Zhao (2003). The anomalous zone is found extended distinctly by 50–60 km in the lateral direction, indicating the reinforcement of cracks and fractured volume of rock matrix due to long aftershock sequence since 2001 Bhuj earthquake in the source area. It is inferred that the presence of a fluid-filled fractured rock matrix with super saturation may have affected the structural and seismogenic strengths of the source zone and is still contributing significantly to the geneses of earthquakes in and around the source zone. Anomalous pattern of high-ε with wider distribution of high-ξ indicates the existence of micro-cracks in the lower crust, while high-ψ suggests the cementation of cracks through permeation of residual magma/metamorphic fluids into the hypocenter zone. The results suggest that the existence of residual fluids in the fractured rock matrix in the mid to lower crust might have played a key role in triggering the 2001 mainshock and is still responsible for its continued long aftershock sequences.
Keywords:Crack density  Saturation rate  Porosity  Fluids  Aftershocks  Cementation
本文献已被 ScienceDirect 等数据库收录!
正在获取相似文献,请稍候...
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号