首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The partitioning of seawater cations during the transformation of gypsum to anhydrite
Authors:Jacob Kushnir
Institution:Geoscience Group, Isotope Department, The Weizmann Institute of Science, Rehovot, Israel
Abstract:The coprecipitation of Sr, Mg, Na and K with anhydrite during the dehydration of gypsum was studied in laboratory experiments. The partition coefficients of Mg and Sr between anhydrite and solution decrease with increasing temperature. The partition coefficients of the alkali-ions do not depend upon temperature, but are affected by the brine composition.The mechanism of the phase transformation gypsum → anhydrite occurs via dissolution and precipitation, when the coprecipitated-ions are repartitioned between the new phase and the solution. The partition coefficients established in this study are applicable also for primary anhydrite.During the dehydration of gypsum at elevated temperatures metastable bassanite may form as an intermediate stage. The amount of cations coprecipitated with bassanite is much larger than the amount coprecipitated with anhydrite or gypsum. This phenomenon may have an influence on the partitioning of cations during the dehydration of gypsum, particularly on Sr.The partition coefficients of seawater cations between anhydrite and the brine are similar to those between gypsum and the brine. For this reason the coprecipitated-ions are not expected to be good indicators to distinguish between primary and secondary calcium sulfate minerals.The temperature effect on the coprecipitation of Mg and Sr with anhydrite makes these ions possible indicators for the temperature at which the phase transformation occurred. This temperature corresponds to the depth of burial of the gypsum at the stage of dehydration.The coprecipitation of seawater cations with anhydrite in the natural environment was studied in two systems: A small Pleistocene evaporite lens from the Sinai Peninsula and the Triassic anhydrite of the Mohilla Formation, Israel. The coprecipitated-ion composition of these samples was used to derive the conditions under which the anhydrite was formed.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号