首页 | 本学科首页   官方微博 | 高级检索  
     

像元与对象特征融合的高分辨率遥感影像道路中心线提取
引用本文:曹云刚,王志盼,慎利,肖雪,杨磊. 像元与对象特征融合的高分辨率遥感影像道路中心线提取[J]. 测绘学报, 2016, 45(10): 1231-1240. DOI: 10.11947/j.AGCS.2016.20160158
作者姓名:曹云刚  王志盼  慎利  肖雪  杨磊
作者单位:1. 西南交通大学高速铁路运营安全空间信息技术国家地方联合工程实验室, 四川 成都 611756;2. 西南交通大学地球科学与环境工程学院, 四川 成都 611756;3. 四川省第二测绘地理信息工程院, 四川 成都 610100
基金项目:国家重点基础研究计划(2012CB719901),国家自然科学基金(41201434;41401374),数字制图与国土信息应用工程国家测绘地理信息局重点实验室开放基金(DM2016SC06),四川省地理国情监测工程技术研究中心开放基金(GC201516)Foundation support:The National Basic Research Program of China(973 Program)(2012CB719901),The National Natural Science Foundation of China(.41201434
摘    要:提出了一种融合像元-多尺度对象级特征的高分辨率遥感影像道路中心线提取方法。首先在像素级上提取影像的纹理和形状结构特征,在构建的多尺度分割集影像上提取对象的区域光谱特征。然后,将像元级特征与多尺度对象特征进行决策级融合,完成道路网的粗提取。最后,结合本文所提出的非道路区域自动去除算法和张量投票算法,实现道路中心线的精提取。不同场景、不同分辨率数据下开展的试验结果表明,该方法可有效改善传统道路提取方法易产生的"盐噪声"和非道路地物粘连现象。

关 键 词:高分辨率遥感  多特征融合  道路提取  基于像素  面向对象  
收稿时间:2016-04-07
修稿时间:2016-06-16

Fusion of Pixel-based and Object-based Features for Road Centerl ine Extraction from High-resolution Satellite Imagery
CAO Yungang,WANG Zhipan,SHEN Li,XIAO Xue,YANG Lei. Fusion of Pixel-based and Object-based Features for Road Centerl ine Extraction from High-resolution Satellite Imagery[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(10): 1231-1240. DOI: 10.11947/j.AGCS.2016.20160158
Authors:CAO Yungang  WANG Zhipan  SHEN Li  XIAO Xue  YANG Lei
Affiliation:1. State-province Joint Engineering Laboratory of Spatial Information Technology of High-speed Railway Safety, Southwest Jiaotong University, Chengdu 611756, China;2. Faculty of Geosciences and Environmental Engineering Southwest Jiaotong University, Chengdu 611756, China;3. Sichuan Province Second Geographic Information Engineering Institute of Surveying and Mapping, Chengdu 610100, China
Abstract:A novel approach for road centerline extraction from high spatial resolution satellite imagery is proposed by fusing both pixel-based and object-based features.Firstly,texture and shape features are extracted at the pixel level,and spectral features are extracted at the object level based on multi-scale image segmentation maps.Then,extracted multiple features are utilized in the fusion framework of Dempster-Shafer evidence theory to roughly identify the road network regions.Finally,an automatic noise removing algorithm combined with the tensor voting strategy is presented to accurately extract the road centerline.Experimental results using high-resolution satellite imageries with different scenes and spatial resolutions showed that the proposed approach compared favorably with the traditional methods, particularly in the aspect of eliminating the salt noise and conglutination phenomenon.
Keywords:high resolution remote sensing  multiple feature fusion  road extraction  pixel-based  object-based
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《测绘学报》浏览原始摘要信息
点击此处可从《测绘学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号