首页 | 本学科首页   官方微博 | 高级检索  
     

融合点、对象、关键点等3种基元的点云滤波方法
引用本文:林祥国,张继贤,宁晓刚,段敏燕,臧艺. 融合点、对象、关键点等3种基元的点云滤波方法[J]. 测绘学报, 2016, 45(11): 1308-1317. DOI: 10.11947/j.AGCS.2016.20160372
作者姓名:林祥国  张继贤  宁晓刚  段敏燕  臧艺
作者单位:中国测绘科学研究院, 北京 100830
基金项目:Foundation support:The National Natural Science Foundations of China(41371405),The Foundation for Remote Sensing Young Talents by the National Remote Sensing Center of China,The Basic Research Fund of the Chi nese Academy of Surveyi ng and Mappi ng(777161103)
摘    要:
基元是影响点云滤波精度和效率的关键因素之一。本文提出了一种基于多基元的三角网渐进加密(MPTPD)滤波方法。它包括点云分割、对象关键点提取、基于关键点的对象类别判别3个主要阶段,且3个阶段的基元分别为点、对象、关键点。使用了4景机载激光雷达和摄影测量点云数据对MPTPD、三角网渐进加密(TPD)、基于对象的三角网渐进加密(OTPD)3种滤波方法进行了性能测试。试验表明,MPTPD方法具有整体上最优的性能:在精度方面,MPTPD与OTPD两种方法的精度相当,MPTPD方法的一类误差I、总误差T比TPD的相应误差分别低约22.07%和8.44%;在效率方面,多数情况下TPD、MPTPD、OTPD方法的效率依次降低,且MPTPD的平均耗时是OTPD平均耗时的57.93%。

关 键 词:滤波  激光雷达点云  摄影测量点云  对象  三角网  
收稿时间:2016-07-29
修稿时间:2016-10-01

Filtering of Point Clouds Using Fusion of Three Types of Primitives Including Points,Objects and Key Points
LIN Xiangguo,ZHANG Jixian,NING Xiaogang,DUAN Minyan,ZANG Yi. Filtering of Point Clouds Using Fusion of Three Types of Primitives Including Points,Objects and Key Points[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(11): 1308-1317. DOI: 10.11947/j.AGCS.2016.20160372
Authors:LIN Xiangguo  ZHANG Jixian  NING Xiaogang  DUAN Minyan  ZANG Yi
Affiliation:Chinese Academy of Surveying and Mapping, Beijing 100830, China
Abstract:
Primitive,being the basic processing unit,is one of the key factors to determine the accuracy and efficiency of point cloud filtering.Triangular irregular network (TIN)progressive densification (TPD) and object-based TIN progressive densification (OTPD)are two existing filtering methods,but single primitive is employed by them.A multiple-primitives-based TIN progressive densification (MPTPD)filtering method is proposed.It is composed of three key stages,including point cloud segmentation,extraction of key points of objects,the key-points-based judging of the objects.Specifically,point,object and the key points are the primitive of the above three stages respectively.Four testing datasets,including two airborne LiDAR and two photogrammetric point clouds,are used to verify the overall performances of the above three filtering methods.Experimental results suggest that the proposed MPTPD has the best overall performance.In the viewpoint of accuracy,MPTPD and OTPD have the similar accuracy.Moreover, compared with the TPD,MPTPD is able to reduce omission errors and total errors by 22.07% and 8.44%respectively.In the viewpoint of efficiency,under most of the cases,TPD is the highest,MPTPD is the second,and OTPD is the slowest.Moreover,the total time cost of MPTPD is only 57.93% of the one of OTPD.
Keywords:filtering  LiDAR point cloud  photogrammetric point cloud  objects  triangular irregular network
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《测绘学报》浏览原始摘要信息
点击此处可从《测绘学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号