首页 | 本学科首页   官方微博 | 高级检索  
     

高光谱影像的DAE分类
引用本文:付琼莹,余旭初,谭熊,魏祥坡,赵吉龙. 高光谱影像的DAE分类[J]. 测绘科学技术学报, 2016, 0(5). DOI: 10.3969/j.issn.1673-6338.2016.05.009
作者姓名:付琼莹  余旭初  谭熊  魏祥坡  赵吉龙
作者单位:1. 信息工程大学,河南 郑州,450001;2. 65379部队,黑龙江 牡丹江,157000
基金项目:国家自然科学基金项目(41201477),河南省科技攻关计划项目,地理信息工程国家重点实验室开放基金项目(SKLGIE2015-M-3-1
摘    要:针对高光谱影像非线性分类问题,根据高光谱影像光谱分辨率高且光谱具有非线性的特点,结合深度学习理论,提出了一种采用降噪自动编码器(DAE)的高光谱影像分类方法。该方法结合降噪自动编码器与SOFTMAX分类器,构造深层网络分类模型;然后,利用加噪后的光谱数据,采用Dropout方法对分类模型进行预训练和微调;最后,利用训练得到的网络模型学习高光谱影像光谱的隐含特征,实现高光谱影像的分类。采用该方法对AVIRIS和PHI的高光谱影像分别进行分类对比实验,结果表明该方法能有效提高高光谱影像分类精度。

关 键 词:高光谱影像  神经网络  深度学习  降噪自动编码器  影像分类

Classification of Hyperspectral Imagery Based on Denoising Autoencoders
FU Qiongying,YU Xuchu,TAN Xiong,WEI Xiangpo,ZHAO Jilong. Classification of Hyperspectral Imagery Based on Denoising Autoencoders[J]. Journal of Zhengzhou Institute of Surveying and Mapping, 2016, 0(5). DOI: 10.3969/j.issn.1673-6338.2016.05.009
Authors:FU Qiongying  YU Xuchu  TAN Xiong  WEI Xiangpo  ZHAO Jilong
Abstract:Hyperspectral imagery has high spectral resolution, and its spectrum is always been non-linear. Com-bined with the theory of deep learning, a new hyperspectral classification method based on denoising autoencoders ( DAE) is proposed. Firstly, combining denoising autoencoders with SOFTMAX classifier, a deep network model is constructed. Then, the spectrum with noise is used as input signal, and Dropout method is utilized to train the model in pre-training and fine-tuning processes. Finally, using the trained network model, the implicit feature of spectrum of hyperspectral imagery can be learned and the classification of hyperspectral imagery is achieved. Ac-cording to two comparative experiments of AVIRIS and PHI hyperspectral imagery, the results indicate that the proposed method is effective to improve the hyperspectral image classification accuracy.
Keywords:hyperspectral imagery  neural network  deep learning  denoising autoencoder  image classification
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号