首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mechanical and transport constitutive models for fractures subject to dissolution and precipitation
Authors:Derek Elsworth  Hideaki Yasuhara
Institution:1. Department of Energy and Mineral Engineering, Penn State University, University Park, PA 16802, U.S.A.;2. Department of Civil and Environmental Engineering, Ehime University, 3, Bunkyo‐cho, Matsuyama 790‐8577, Japan
Abstract:Transient changes in the permeability of fractures in systems driven far‐from‐equilibrium are described in terms of proxy roles of stress, temperature and chemistry. The combined effects of stress and temperature are accommodated in the response of asperity bridges where mineral mass is mobilized from the bridge to the surrounding fluid. Mass balance within the fluid accommodates mineral mass either removed from the flow system by precipitation or advection, or augmented by either dissolution or advection. Where the system is hydraulically closed and initially at equilibrium, reduction in aperture driven by the effects of applied stresses and temperatures will be augmented by precipitation on the fracture walls. Where the system is open, the initial drop in aperture may continue, and accelerate, where the influent fluid is oversaturated with respect to the equilibrium mineral concentration within the fluid, or may reverse, if undersaturated. This simple zero‐dimensional model is capable of representing the intricate behavior observed in experiments where the feasibility of fracture sealing concurrent with net dissolution is observed. This zero‐order model is developed as a constitutive model capable of representing key aspects of changes in the transport parameters of the continuum response of fractured media to changes in stress, temperature and chemistry. Copyright © 2009 John Wiley & Sons, Ltd.
Keywords:permeability  precipitation and dissolution  fractures  pressure solution
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号