首页 | 本学科首页   官方微博 | 高级检索  
     


Geochemical and strontium isotopic characteristics of parental Aleutian arc magmas: evidence from the basaltic lavas of Atka
Authors:James D. Myers  Bruce D. Marsh  A. Krishna Sinha
Affiliation:(1) Department of Geology and Geophysics, University of Wyoming, 82071 Laramie, WY, USA;(2) Department of Earth and Planetary Sciences, The Johns Hopkins University, 21218 Baltimore, MD, USA;(3) Department of Geological Sciences, Virginia Polytechnic Institute and State University, 24061 Blacksburg, VA, USA
Abstract:Eighteen flows from a basal stratigraphic sequence on the Aleutian Island of Atka were analyzed for major elements, trace elements and initial 87Sr/86Sr ratios. Petrographically, these lavas contain abundant plagioclase (24–45%) and lesser amounts of olivine (<7%), magnetite and clinopyroxene phenocrysts. Compositionally, the lavas are high-alumina (sim20wt%) basalts (48–51 wt% SiO2) with low TiO2 (<1%) and MgO (<5%). Within the section, compositional variations for all major elements are quite small. While MgO content correlates with olivine phenocryst contents, no such relationship exists between the other oxides and phenocryst content. These lavas are characterized by 8–10 ppm Rb, high Sr (610–669 ppm), 308–348 ppm Ba and very constant Zr (23–29 ppm) and Sc (23–29 ppm) abundances. Ni and Cr display extremely large compositional ranges, 12–118 ppm and 12–213 ppm, respectively. No correlation exists between trace element concentrations and phenocryst contents. Strontium isotopic ratios show a small but significant range (0.70314–0.70345) and are slightly elevated with respect to typical MORB. No systematic correlation between stratigraphic position and petrography or geochemistry is evident. REE abundances measured on six samples are LREE enriched ((La/ Yb)N = 2.20–2.81) and display similar chondrite normalized patterns. One sample has a slight positive Eu anomaly but the other lavas do not. Compared to other Aleutian basalts of similar silica content, these lavas are less LREE enriched and have lower overall abundances. The geochemical characteristics of these basalts suggest they represent true liquid compositions despite their highly porphyritic nature. Published phase relations indicate fractionation of a more MgO-rich magma could not have produced these lavas. The high Al2O3 and low MgO and compatible element abundances suggest a predominantly oceanic crustal source for parental high-alumina basalts.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号