首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Rare earth elements (REE) of dissolved and suspended loads in the Xijiang River, South China
Authors:Zhifang Xu  Guilin Han  
Institution:aKey Laboratory of Engineering Geomechanics, Institute of Geology and Geophysics, Chinese Academy of Sciences, P.O. Box 9825, Beijing 100029, China;bState Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guizhou 550002, China
Abstract:The Xijiang River is the main channel of the Zhujiang (Pearl River), the second largest river in China in terms of water discharge, and flows through one of the largest carbonate provinces in the world. The rare earth element (REE) concentrations of the dissolved load and the suspended particulate matter (SPM) load were measured in the Xijiang River system during the high-flow season. The low dissolved REE concentration in the Xijiang River is attributed to the interaction of high pH and low DOC concentration. The PAAS-normalized REE patterns for the dissolved load show some common features: negative Ce anomaly, progressively heavy REE (HREE) enrichment relative to light REE (LREE). Similar to the world’s major rivers the absolute concentration of the dissolved REE in the Xijiang River are mainly pH controlled. The degree of REE partitioning between the dissolved load and SPM load is also strongly pH dependent. The negative Ce anomaly is progressively developed with increasing pH, being consistent with the oxidation of Ce (III) to Ce (IV) in the alkaline river waters, and the lack of Ce anomalies in several DOC-rich waters is presumably due to both Ce (III) and Ce (IV) being strongly bound by organic matter. The PAAS-normalized REE patterns for the dissolved load and the SPM load in rivers draining the carbonate rock area exhibit middle REE (MREE) enrichment and a distinct maximum at Eu, indicating the preferential dissolution of phosphatic minerals during weathering of host lithologies. Compared to the Xijiang River waters, the MREE enrichment with a maximum at Eu disappeared and light REE were more depleted in the South China Sea (SCS) waters, suggesting that the REE sourced from the Xijiang River must be further fractionated and modified on entering the SCS. The river fluxes of individual dissolved REE introduced by the Xijiang River into the SCS vary from 0.04 to 4.36 × 104 mol a−1.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号