首页 | 本学科首页   官方微博 | 高级检索  
     


Composite kernels for hyperspectral image classification
Authors:Camps-Valls   G. Gomez-Chova   L. Munoz-Mari   J. Vila-Frances   J. Calpe-Maravilla   J.
Affiliation:Grup de Processament Digital de Senyals, Univ. de Valencia, Spain;
Abstract:This letter presents a framework of composite kernel machines for enhanced classification of hyperspectral images. This novel method exploits the properties of Mercer's kernels to construct a family of composite kernels that easily combine spatial and spectral information. This framework of composite kernels demonstrates: 1) enhanced classification accuracy as compared to traditional approaches that take into account the spectral information only: 2) flexibility to balance between the spatial and spectral information in the classifier; and 3) computational efficiency. In addition, the proposed family of kernel classifiers opens a wide field for future developments in which spatial and spectral information can be easily integrated.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号