首页 | 本学科首页   官方微博 | 高级检索  
     检索      

海底电性源频率域CSEM勘探建模及水深影响分析
引用本文:刘长胜,Mark E. Everett,林君,周逢道.海底电性源频率域CSEM勘探建模及水深影响分析[J].地球物理学报,2010,53(8):1940-1952.
作者姓名:刘长胜  Mark E. Everett  林君  周逢道
作者单位:1. 吉林大学地球信息探测仪器教育部重点实验室,长春 130026; 2. 吉林大学仪器科学与电气工程学院,长春 130026; 3. Department of Geology and Geophysics, Texas A&M University, College Station, TX 77843, USA
基金项目:国家高技术研究发展计划(863)项目,国家留学基金委资助项目 
摘    要:为了探索我国海域油气和水合物等高阻目标体CSEM勘探的可行性和方法技术,本文研究了在海水中水平电性源激励下有限水深海洋地电模型的频率域电磁响应,为进一步的1D和3D仿真计算奠定了理论基础.在推导电磁响应公式时,首先给出了各层介质的Lorentz势,然后根据Coulomb势与Lorentz势的关系,得到了各层介质的Coulomb势.各层介质中的电磁场均可以由Lorentz势或者Coulomb势计算得到,但在有限元计算时Coulomb势具有优势.长导线源的电磁场和势函数可以由电偶源的电磁场和势函数沿导线长度积分得到.文中具体给出了海水中水平电偶源和长导线源在海水层的电磁场公式,并根据该公式计算了不同水深环境下海底表面的电磁场分布,分析了海水深度对海底油气储层电磁异常的影响.结果表明,随着水深减小,异常幅度和形态特征发生明显变化.当水深很浅时(如50 m),只有同线方向的Ex和Ez两个电场分量存在明显异常.最后,以两个已知海底油田为例,计算了不同水深环境下可观测到的电场异常,展示了电性源频率域CSEM在海底勘探中(包括浅海环境)的良好应用前景.对于该方法实用化过程中还需进一步解决的问题,文中结尾部分也进行了初步探讨.

关 键 词:海底勘探  可控源电磁法  电性源  建模  仿真  
收稿时间:2009-03-24

Modeling of seafloor exploration using electric-source frequency-domain CSEM and the analysis of water depth effect
LIU Chang-Sheng,Mark E. Everett,LIN Jun,ZHOU Feng-Dao.Modeling of seafloor exploration using electric-source frequency-domain CSEM and the analysis of water depth effect[J].Chinese Journal of Geophysics,2010,53(8):1940-1952.
Authors:LIU Chang-Sheng  Mark E Everett  LIN Jun  ZHOU Feng-Dao
Institution:1. Key Lab of Geo-Exploration and Instrumentation (Ministry of Education), Jilin University, Changchun 130026, China; 2. College of Instrumentation & Electric Engineering, Jilin University, Changchun 130026, China; 3. Department of Geology and Geophysics, Texas A&M University, College Station, TX 77843, USA
Abstract:For the final goal of solving the problem about the feasibility and techniques of resistive target (e.g. hydrocarbon) exploration in the environment of China sea using CSEM, this paper studies the frequency-domain electromagnetic responses of a marine geological model with finite depth of seawater excited by a horizontal electric source, establishing theoretical base for 1D and 3D electromagnetic simulation. In the derivation of electric field formulas and magnetic field formulas, the Lorentz-gauged potential in each layer is solved first, and then the Coulomb-gauged potential in each layer is derived from the solution of Lorentz-gauged potential in the corresponding layer by the relationship between these two kinds of potentials. Although the electric fields and magnetic fields in all layers can be computed from the Lorentz-gauged potentials or the Coulomb-gauged potentials, the Coulomb-gauged potentials are advantageous in finite-element computation. The electromagnetic fields and potentials for an electric source with finite length can be obtained by integrating those for an electric dipole along the length of source. The electromagnetic field formulas in seawater both for a horizontal electric dipole and for an electric source with finite length are represented in this paper and they are used to simulate the distribution of electric fields and magnetic fields over seafloor in different water-depth environments. The effect of water depth on the electromagnetic anomalies of hydrocarbon buried in seafloor is discussed in the end. The results show that the intensity and shape of the electromagnetic anomalies markedly change with the decrease of water depth and only the Ex and Ez components reveal perceptible anomalies when seawater is very shallow, for example, 50 m. At last, the electric-field anomalies for two well known oil fields in different water depth are calculated, which shows the good future of electric-source frequency-domain CSEM in seafloor exploration, even in shallow sea. The problems that need further study in the practical application of this method are also discussed in the last part of this paper.
Keywords:Seafloor exploration  CSEM  Electric source  Modeling  Simulation
本文献已被 万方数据 等数据库收录!
点击此处可从《地球物理学报》浏览原始摘要信息
点击此处可从《地球物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号