首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Time-domain floating body dynamics by rational approximation of the radiation impedance and diffraction mapping
Authors:Christopher J Damaren
Institution:Department of Mechanical Engineering, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
Abstract:The problem of approximating the dynamics of a floating structure in a transient wave environment with a set of constant-coefficient differential equations is explored. It is assumed that the solutions of the corresponding steady-state time-harmonic radiation and diffraction problems are available. It is proposed to fit the frequency responses associated with the ‘radiation impedance' and wave-exciting forces with appropriate analytic functions. In the case of the radiation problem, these possess certain properties corresponding to the passivity of the radiation mapping. By choosing rational approximations, the transformation from the frequency to the time domain is facilitated. The method is illustrated for both two-dimensional and three-dimensional problems using a floating cylinder, sphere, and a model of Salter's Duck which exhibits hydrodynamic coupling between sway, heave, and pitch motions.
Keywords:Transient hydrodynamics  Floating bodies
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号