首页 | 本学科首页   官方微博 | 高级检索  
     

深度学习提取不透水面的自然环境影响因素研究
作者姓名:侯幸幸  张新长  赵怡  孙颖  阮永俭
作者单位:1. 广州大学地理科学与遥感学院;2. 中山大学地理科学与规划学院
基金项目:国家自然科学基金面上项目(42071441);
摘    要:针对遥感影像提取不透水面通常会受到自然环境因素影响的问题,该文采用改进的U2-Net模型对北京市五区和南京市五区的Landsat 8 OLI影像进行季节性不透水面提取,探索深度学习提取不透水面时的自然环境影响因素及其影响机制。选择植被、水、裸土及地表温度作为影响因素,通过地理探测器研究以上因素对不透水面提取的影响机制。基于改进的U2-Net模型提取不透水面精度较高,其中北京市研究区域的提取精度为93.81%,南京市研究区域的提取精度为94.04%;4项自然环境因素对不透水面提取精度均有影响,单因素分析中地表温度影响最大,交互作用分析中地表温度与植被覆盖影响最大。研究结果表明:夏季不透水面提取精度最高,受自然因素及交互作用影响最小;提取不透水面建议采用夏季影像。本文探究了自然因素对不透水面提取的影响机制,为进一步不透水面遥感提取和动态差异分析提供有力支撑。

关 键 词:改进U2-Net  不透水面  季节性环境影响因素  地理探测器
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号