Abstract: | A three-dimensional numerical model is developed and used to study the coastal upwelling processes and corresponding seasonal changes in the sea level along the west coast of India. The upwelling and associated sea level variations are seen as a response of coastal ocean to pure wind stress forcing. The model is designed to represent coastal ocean physics by resolving surface and bottom Ekman layers as realistically as possible. The prognostic variables are the three components of the velocity field, temperature, salinity and turbulent energy. The governing equations together with their boundary conditions are solved by finite-difference techniques. Experiments are performed to investigate sea level fluctuations associated with the thermal response and alongshore currents of the coastal waters. The model is forced with mean monthly wind stress forcing of January, May, July and September representing northeast monsoon and different phases of the southwest monsoon. It is known from the observational study that the upwelling process reaches to the surface waters by May along the coastal waters of the extreme southwest peninsular region. The process is more intense in July compared to May and September and its strength decreases from south to north. However, during the northeast monsoon season, which is represented by January wind stress forcing in the model, downwelling is simulated along the coast. The model simulations of the coastal response are compared with the observations and are found to be in good agreement. The maximum computed vertical velocity of about 2.0 2 10 -3 cm s -1 is predicted in July in the southern region off the coast. |