首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Kinetics of chromate reduction by pyrite and biotite under acidic conditions
Institution:1. Department of NanoMaterials Engineering, Chungnam National University, 79 Daehak-ro, Yuseong-gu, Daejeon 305-764, Republic of Korea;2. Graduate School of Green Energy Technology, Chungnam National University, 79 Daehak-ro, Yuseong-gu, Daejeon 305-764, Republic of Korea;3. Division of Advanced Materials Engineering, Kongju National University, 275, Budae-dong, Cheonan City, Chungnam 330-717, Republic of Korea;4. Korea Research Institute of Chemical Technology, P.O. Box 107, 141 Gajeong-ro, Yuseong-gu, Daejeon 305-600, Republic of Korea
Abstract:The removal of chromate from aqueous solutions, using finely ground pyrite and biotite, was investigated by batch experiments. The kinetics and mechanism of chromate reduction are discussed here. Chromate reduction by pyrite was about 100 times faster than that by biotite, and was also faster at pH 3 than 4. When pyrite was used, more than 90% of the initial chromate was reduced within 4 h at pH 4, and within 40 min. at pH 3. However, with biotite more than 400 h was required for the reduction of 90% of the initial chromate. The results indicate that the rate of chromate reduction was strongly depending on the amount and dissolution rate of the Fe(II) in the minerals. The reduction of chromate at pH 4 resulted in the precipitation of (Cr, Fe)(OH)3(s), which is believed to have limited the concentrations of dissolved Cr(III) and Fe(III) to less than the expected values. When biotite was used, the amounts of decreased Fe(II) and reduced Cr(VI) showed no stoichiometric relationship, which implies that not only was there chromate reduction by Fe(II) ions in the acidic solution, but also heterogeneous reduction of Fe(III) ions by structural Fe(II) in biotite. However, the results from a series of the experiments using pyrite showed that the concentrations of the decreased Fe(II) and the reduced Cr(VI) were close to the stoichiometric ratio of 3:1. This was because the oxidation of pyrite rapidly created Fe(II) ions, even in oxygenated solutions, and the chromate reduction by the Fe(II) ions was significantly faster than the Fe(II) ion oxygenation. When compared with the experimental sets controlled at an initial pH of 3, the pH of the biotite batch, which was not controlled, increased to 3.4. Because of the increase in the pH, Cr(VI) was not completely removed, and 25% (1.2–1.3 mg/L Cr(VI)) of the initial concentration remained for up to 1000 h. The pH increase is, in most cases, caused by the hydrolysis of clay minerals. However, in the pyrite batches, there was no difference in the variations of the chromate reduction in relation to the pH control. There was also no difference in the capacity and rate of Cr(VI) reduction in 0.01 M NaCl or Na2SO4 solutions. In the 0.01 M NaH2PO4 solution pyrite experiment, the Cr(VI) was not completely removed, despite the maintenance of the pH at 3. The dominant Fe species was about 10 mg/L Fe(III) and few Fe(II) ions existed in solution. The Fe phosphate (Fe3(PO4)2 or FePO4) coatings on the surface of pyrite prevented access of O2 or Cr(VI). Therefore, the surface coatings are likely to have caused the deterioration of the Cr(VI) reduction capacity in the NaH2PO4 solution.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号