首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Isotopic,mineralogical, and thermobarometric variations of Al-Wahbah crater (Maklaa Tameya), Kishb area,Saudi Arabia
Authors:Antar Abdel Wahab  Mohamed Fouad Ghoneim  Tamer Abu-Alam
Institution:1.Earth Science Research Unit,Taif University,Taif,Kingdom of Saudi Arabia;2.Department of Geology, Faculty of Science,Kafrelsheikh University,Kafr El Sheikh,Egypt;3.Geology Departments, Faculty of Science,Tanta University,Tanta,Egypt;4.Norwegian Polar Institute,Troms?,Norway
Abstract:The Cenozoic volcanism of western Saudi Arabia extends from southern Yemen to Jordan northward. They cover an area of nearly 180,000 km2. The rocks are dominated by alkali olivine basalts and olivine basalts. Al-Wahbah crater, a part of Harrat Kishb, represents a model occurrence to study the gneisses of these rocks. New mineral chemistry and isotopic data are presented. It aims to follow the isotopic, mineralogical, and thermobarometry variations among these volcanics. Amphiboles of the studied volcanics belong to the monoclinic calcic group. The chemistry of the amphibole crystals shows two ranges of pressure. They are 3.6–5.6 and 0.38–0.78 kbar. The Aliv values of the amphiboles are in the range of 1.202 and 1.407, indicating corresponding temperature condition of 820–920 and 620–720 °C, respectively. The feldspar of the studied samples has the composition of plagioclase, though some grains have sanidine composition. They are formed in temperature range of 975 and 400 °C. The coexisting amphiboles and plagioclases indicate two sets of pressure and temperature. They are 540–575 °C (3.5–4 kbar) and 510–525 °C (~2 kbar), respectively. Rb–Sr isochron of the whole rock yields an age of 0.867 ± 0.160 Ma with initial Sr87/Sr86 of 0.702 ± 0.00086. The low initial ratio of Sr87/Sr86 together with positive values of εNd today implies that the studied volcanics have mantle source. Meanwhile, the present isotopic data suggest extraction of juvenile magma from asthenosphere source. The present study shows that the Al-Wahbah crater rocks belong to Cenozoic basalts and indicate EM-I-like signature.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号