首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Carbon storage in the grasslands of China based on field measurements of above- and below-ground biomass
Authors:Jiangwen Fan  Huaping Zhong  Warwick Harris  Guirui Yu  Shaoqiang Wang  Zhongmin Hu  Yanzhen Yue
Institution:(1) Key Laboratory of Ecosystem Network Observation and Modeling, CERN Center for Synthesis Research, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Datun Road, Anwai, Beijing, 100101, China;(2) Landcare Research, P.O. Box 40, Lincoln, 7640, New Zealand
Abstract:Above- and below-ground biomass values for 17 types of grassland communities in China as classified by the Chinese Grasslands Resources Survey were obtained from systematic replicated sampling at 78 sites and from published records from 146 sites. Most of the systematic samples were along a 5,000-km-long transect from Hailar, Inner Mongolia (49°15′N, 119°15′E), to Pulan, Tibet (30°15′N, 81°10′E). Above-ground biomass was separated into stem, leaf, flower and fruit, standing dead matter, and litter. Below-ground biomass was measured in 10-cm soil layers to a depth of 30 cm for herbs and to 50 cm for woody plants. Grassland type mean total biomass carbon densities ranged from 2.400 kg m−2 for swamp to 0.149 kg m−2 for alpine desert grasslands. Ratios of below- to above-ground carbon density varied widely from 0.99 for tropical tussock grassland to 52.28 for alpine meadow. Most below-ground biomass was in the 0–10 cm soil depth layer and there were large differences between grassland types in the proportions of living and dead matter and stem and leaf. Differences between grassland types in the amount and allocation of biomass showed patterns related to environments, especially aridity gradients. Comparisons of our estimates with other studies indicated that above-ground biomass, particularly forage-yield biomass, is a poor predictor of total vegetation carbon density. Our estimate for total carbon storage in the biomass of the grasslands of China was 3.32 Pg C, with 56.4% contained in the grasslands of the Tibet-Qinghai plateau and 17.9% in the northern temperate grasslands. The need for further standardized and systematic measurements of vegetation biomass to validate global carbon cycles is emphasised.
Keywords:China  Carbon storage  Grassland communities  Biomass components
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号