首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Lateral downslope transport and tentative sedimentary organic carbon box model in the southern Yap Trench,western Pacific Ocean
Authors:Dong Li  Jun Zhao  Chenggang Liu  Jianming Pan  Ji Hu
Institution:Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
Abstract:Sediment collapse and subsequent lateral downslope migration play important roles in shaping the habitats and regulating sedimentary organic carbon (SOC) cycling in hadal trenches. In this study, three sediment cores were collected using a human-occupied vehicle across the axis of the southern Yap Trench (SYT). The total organic carbon (TOC) and total nitrogen (TN) contents, δ13C, radiocarbon ages, specific surface areas, and grain size compositions of sediments from three cores were measured. We explored the influence of the lateral downslope transport on the dispersal of the sediments and established a tentative box model for the SOC balance. In the SYT, the surface TOC content decreased with water depth and was decoupled by the funneling effect of the V-shaped hadal trench. However, the sedimentation (0.002 5 cm/a) and SOC accumulation rates (~0.038 g/(m2·a) (in terms of OC)) were approximately 50% higher in the deeper hadal region than in the abyssal region (0.001 6 cm/a and ~0.026 g/(m2·a) (in terms of OC), respectively), indicating the occurrence of lateral downslope transport. The fluctuating variations in the prokaryotic abundances and the SOC accumulation rate suggest the periodic input of surficial sediments from the shallow region. The similar average TOC (0.31%–0.38%), TN (0.06%–0.07%) contents, and SOC compositions (terrestrial OC (11%–18%), marine phytoplanktonic OC (45%–53%), and microbial OC (32%–44%)) of the three sites indicate that the lateral downslope transport has a significant mixing effect on the SOC composition. The output fluxes of the laterally transported SOC (0.44–0.56 g/(m2·a) (in terms of OC)) contributed approximately (47%–73%) of the total SOC input, and this proportion increased with water depth. The results of this study demonstrate the importance of lateral downslope transport in the spatial distribution and development of biomes.
Keywords:southern Yap Trench  sedimentary organic carbon cycling  lateral downslope transport  diluting effect  box model
点击此处可从《海洋学报(英文版)》浏览原始摘要信息
点击此处可从《海洋学报(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号