首页 | 本学科首页   官方微博 | 高级检索  
     


A simplified linear feature matching method using decision tree analysis,weighted linear directional mean,and topological relationships
Authors:Ick-Hoi Kim  Yi-Chen Wang
Affiliation:Department of Geography, National University of Singapore, Singapore
Abstract:
Linear feature matching is one of the crucial components for data conflation that sees its usefulness in updating existing data through the integration of newer data and in evaluating data accuracy. This article presents a simplified linear feature matching method to conflate historical and current road data. To measure the similarity, the shorter line median Hausdorff distance (SMHD), the absolute value of cosine similarity (aCS) of the weighted linear directional mean values, and topological relationships are adopted. The decision tree analysis is employed to derive thresholds for the SMHD and the aCS. To demonstrate the usefulness of the simple linear feature matching method, four models with incremental configurations are designed and tested: (1) Model 1: one-to-one matching based on the SMHD; (2) Model 2: matching with only the SMHD threshold; (3) Model 3: matching with the SMHD and the aCS thresholds; and (4) Model 4: matching with the SMHD, the aCS, and topological relationships. These experiments suggest that Model 2, which considers only distance, does not provide stable results, while Models 3 and 4, which consider direction and topological relationships, produce stable results with levels of accuracy around 90% and 95%, respectively. The results suggest that the proposed method is simple yet robust for linear feature matching.
Keywords:Feature matching  data conflation  Hausdorff distance  cosine similarity  historical data
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号