首页 | 本学科首页   官方微博 | 高级检索  
     


Numerical Simulation of the Airflow Across Trees in a Windbreak
Authors:Moshe Rosenfeld  Gil Marom  Arieh Bitan
Affiliation:1. School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
2. Department of Geography and the Human Environment, Tel Aviv University, Tel Aviv, Israel
Abstract:The flow across a three-dimensional (3-D) windbreak comprising individual cypress trees is studied to establish the significance and extent of the 3-D flow patterns. The cypress tree is modelled as a solid cylindrical stem and a conic porous canopy. Cases with a single row of trees or two rows of trees with different distances between the rows are considered; in the case of a single row, several densities of the canopy are used. The steady Reynolds-averaged Navier–Stokes (RANS) approximation is solved using a commercial computational fluid dynamics (CFD) package and a high-resolution mesh. Three-dimensional flow is found in the vicinity of the windbreak up to a leeward distance of 1–2 tree-heights, depending on the density of the canopy, and is manifest as significant lateral variations and reduced vertical flow. At larger leeward distances, a two-dimensional (2-D) flow is established with characteristics similar to existing 2-D studies; the flow leeward of the last row is insensitive to the distance between the rows. Homogeneous 2-D windbreak models are found to be inaccurate in the vicinity of the windbreak. This is exactly the region that needs to be sheltered in many cases, since the inner vegetation is anyway protected by the outer vegetation.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号